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[1] Non-Fickian (or anomalous) transport of
contaminants has been observed at field and laboratory
scales in a wide variety of porous and fractured
geological formations. Over many years a basic
challenge to the hydrology community has been to
develop a theoretical framework that quantitatively
accounts for this widespread phenomenon. Recently,
continuous time random walk (CTRW) formulations
have been demonstrated to provide general and
effective means to quantify non-Fickian transport. We
introduce and develop the CTRW framework from its
conceptual picture of transport through its mathematical
development to applications relevant to laboratory- and
field-scale systems. The CTRW approach contrasts with

ones used extensively on the basis of the advection-
dispersion equation and use of upscaling, volume
averaging, and homogenization. We examine the
underlying assumptions, scope, and differences of these
approaches, as well as stochastic formulations, relative to
CTRW. We argue why these methods have not been
successful in fitting actual measurements. The CTRW
has now been developed within the framework of partial
differential equations and has been generalized to apply
to nonstationary domains and interactions with immobile
states (matrix effects). We survey models based on
multirate mass transfer (mobile-immobile) and fractional
derivatives and show their connection as subsets within
the CTRW framework.
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1. INTRODUCTION

[2] The question of how to quantify contaminant trans-

port in porous soils and rock has been the focus of research

over several decades in hydrology, as well as in the closely

related disciplines of soil science and petroleum engineer-

ing. Landmark tracer breakthrough experiments, dating

mostly from the 1950s and 1960s, formed the basis for

theoretical developments and analyses that considered

almost exclusively the classical advection-dispersion equa-

tion (ADE) (see (74)). The ADE, and variants thereof, have

continued to be used to this day as the principal means for

considering and quantifying tracer transport in porous

media.

[3] However, just how suitable is the ADE framework for

describing tracer transport in natural porous media? Even

early pioneering experiments reported the occurrence of

systematic errors in fitting breakthrough curves (BTCs)

using the classical ADE. In a series of careful and well-

documented column experiments, Scheidegger [1959] ob-

served that deviations in fits of the ADE to the BTCs could

not be explained simply by the usual variability (error) in

experimental measurements. Scheidegger [1959, p. 103]

stated: ‘‘The deviations are systematic which appears to

point toward an additional, hitherto unknown, effect.’’

Aronofsky and Heller [1957] also analyzed published tracer

experiments and reported that systematic deviations arise

between measurements and predictions using the ADE.

Indeed, over the last 4 decades several other studies have

pointed out specific and serious inadequacies in the appli-

cability of the classical ADE, even with small-scale labo-

ratory experiments on homogeneous samples. Silliman and

Simpson [1987] demonstrated convincingly in laboratory

experiments the scale dependency of the dispersivity

coefficient; this is in stark contrast to the fundamental

assumption that the dispersivity is a constant derived from

the microgeometry of the porous medium. Such scale-

dependent behavior is typical of ‘‘non-Fickian’’ or ‘‘anom-

alous’’ transport. These issues are by no means limited to

laboratory-scale experiments; as we discuss in section 3,
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deviations from the classical ADE behavior are even more

significant in natural systems.

[4] While the ADE can treat ‘‘homogeneous’’ porous

media under some conditions, such homogeneity rarely, if

ever, exists. The heterogeneity of natural geological for-

mations at a wide range of scales necessitates consideration

of more sophisticated transport theories. The purpose of this

review is to introduce an effective theoretical and practical

basis that accounts for the behavior of solute transport in

heterogeneous media in field, laboratory, and numerical

experiments based on the continuous time random walk

(CTRW) formalism. Here we shall discuss all aspects of

CTRW, focusing on its relevance and applicability as a

framework that has dealt successfully with the phenomenon

of anomalous transport. We then discuss and critique,

relative to CTRW, other approaches found in the literature.

We show that some of the latter are specialized cases within

the CTRW framework. Throughout this review we use

the terms ‘‘tracer,’’ ‘‘particle,’’ ‘‘contaminant,’’ and ‘‘solute’’

interchangeably.

[5] Why is the conceptual picture underlying the clas-

sical ADE formulation limited? What is missing from this

picture describing the transport behavior of a contaminant

in a natural porous medium? The answers to these

questions lie in the basic recognition that in all geological

formations, heterogeneities are present at all scales, from

the submillimeter pore scale to the basin scale itself. We

emphasize that the term ‘‘heterogeneities’’ can refer to

variations in the distribution of the geometrical properties

(e.g., porosity and hydraulic conductivity), as well as to

variations in the biogeochemical properties of the medium,

all of which can affect tracer transport. Three points of

conceptual understanding can be drawn immediately from

this fact: (1) The high degree of variability in these

heterogeneities rules out, a priori, the possibility of

obtaining complete knowledge of the pore space in which

fluids and contaminants are transported. (2) The paths

traveled by a contaminant in an aquifer are strongly

influenced by the heterogeneities of the geological for-

mation, as well as by the initial and boundary conditions

(BCs), which determine the underlying flow field. (3) Tracer

migration is sensitive to heterogeneities at all scales, so that

we should not be surprised that small-scale heterogeneities

can significantly affect large-scale behavior.

[6] The key consequence of these points is a critical

consideration of the idea of ‘‘homogeneity’’ of the medium

for the purposes of modeling transport and/or defining

‘‘effective’’ transport parameters. It has been shown that

even carefully packed, laboratory-scale flow cells and

columns containing porous media contain ‘‘heterogene-

ities.’’ Studies using magnetic resonance imaging to visu-

alize flow conditions within ‘‘homogeneous’’ geological

materials in laboratory-scale, column experiments report

the existence of preferential flow paths, which strongly

influence both water flow and tracer transport [e.g.,

Hoffman et al., 1996; Oswald et al., 1997]. These paths

occur because of the presence of macrostructures (caused,

e.g., from bridging effects) as well as by microstructures

that reflect grain-size heterogeneities.

[7] At the field scale the issue of ‘‘homogenization’’ of

course arises. Do the above mentioned laboratory-scale

heterogeneities simply average out and become insignificant

at large scales? If so, how large is ‘‘large’’? As already

noted above, heterogeneities are present at all scales. Thus,

for example, the existence of preferential flow paths has

been reported even in apparently ‘‘structureless’’ soils at the

field scale [e.g., Ghodrati and Jury, 1992].

[8] The nature of contaminant transport in geological

materials is thus linked inextricably to the extent and scale

dependence of heterogeneities. The transport that is anom-

alous, or non-Fickian, occurs when the contaminant encoun-

ters, at each scale, a sufficiently broad spectrum of

velocities and stagnant areas resulting from the heterogene-

ities. In addition to the strong influence of preferential flow

paths and slow flow or diffusion-dominated regions, tracers

can in many cases be affected by biogeochemical hetero-

geneities; these heterogeneities enable a wide range of

reaction processes that (temporarily or permanently) delay

the advance of a tracer. Non-Fickian behavior is fundamen-

tally different from Fickian transport, which is the usual

assumption invoked, explicitly or implicitly, for application

of the classical ADE and many of its variants. These other

treatments, and many stochastic approaches, focus on def-

inition of an effective ‘‘macrodispersion’’ parameter at any

given scale of interest. This issue is discussed in detail in

section 6.

[9] The concept of anomalous transport was first

introduced by Montroll and Scher [1973] and Scher and

Montroll [1975] and has subsequently been shown to have

ubiquitous applicability to transport and diffusion in disor-

dered systems. The original application of the concept and

its quantitative predictions [Scher and Montroll, 1975],

discussed in detail in section 2.5, was in the field of

electronic transport in amorphous semiconductors [Tiedje,

1984] and in polymeric media [Bos and Burland, 1987]

where it was well confirmed by an extensive number of

experimental studies. Subsequent use of these ideas expand-

ed into many areas, e.g., the anomalous diffusion of defects

as a basis for the universal stretched exponential relaxation

behavior in a diverse number of materials [Shlesinger,

1988]. The present application to contaminant transport in

geological formations is a uniquely rich example, as the full

chemical plume and BTCs can be measured directly; this

application has represented a new level of confirmation and

further development of the theory.

[10] Here and throughout, we use the terms ‘‘anomalous’’

and ‘‘non-Fickian’’ interchangeably to denote any transport

behavior which differs from that described by the classical

ADE. (Some authors refer to this behavior as ‘‘preasymp-

totic’’ or ‘‘preergodic.’’) The ADE describes Fickian behav-

ior in the sense that mechanical dispersion is assumed to be

quantifiable by a macroscopic form of Fick’s law, and the

resulting temporal and spatial concentration distributions of

an initial pulse are equivalent to a normal, otherwise known

as a Gaussian, distribution.
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[11] To illustrate just how frequently non-Fickian trans-

port occurs, consider tracer migration through an ‘‘homo-

geneous,’’ fully saturated sand pack. As indicated above,

preferential paths for fluid flow and tracer transport are

present even in these conditions, as shown, for example, in

Figure 1. Contrary to Fickian transport the individual dye

plumes are not symmetrical ellipses, nor are the different

plumes identical to each other. Moreover, measurements of

tracer BTCs in such ‘‘homogeneous,’’ meter-length flow

cells have been shown to display ‘‘anomalous’’ early time

arrivals (i.e., later than Fickian) and late time tails [Levy and

Berkowitz, 2003]. Detailed analysis (see section 3.4.2)

shows that the motion and spreading of these chemical

plumes are characterized by distinct temporal scaling; that

is, the time dependence of the spatial moments does not

correspond to a normal (or Gaussian) distribution. In

sections 2–5 we discuss the CTRW approach to these

transport phenomena, and in sections 6 and 7 we contrast

it with other approaches that have been fully discussed in

the literature.

2. CONTINUOUS TIME RANDOM WALK
FRAMEWORK

[12] Two well-studied, generic geological media that

possess heterogeneities on a very wide range of spatial

scales are porous sedimentary rock and ‘‘random’’ fracture

networks (RFN) in low-permeability rock. At the field scale

a reasonable definition of the macroscopic characteristics

(e.g., individual facies) of these geological formations can

be feasible, thus enabling, at a sufficiently coarse resolution,

modeling of flow and transport conditioned on these fea-

tures. However, in practice, there is always some scale, ‘,
below which (y < ‘) heterogeneities are unresolved. The

omnipresent question is, Can one justify the use of average

local properties (e.g., mean velocity and dispersion) at the

scale ‘, or does the range of unresolved heterogeneities y < ‘
have a key influence on overall transport behavior? The

answer is very often a practical one, not an intrinsic one,

depending on the width of the distribution of material

properties for y < ‘.
[13] To account for the effect of a sufficiently broad

(statistical) distribution of material properties (e.g., of per-

meabilities) on the overall transport, one must consider a

probabilistic approach that will generate a probability den-

sity function (pdf) describing key features of the transport.

This pdf, denoted y(s, t), is discussed thoroughly starting in

section 2.3. The effects of multiscale heterogeneities on

contaminant transport patterns are significant, and consid-

eration only of the mean transport behavior, e.g., the spatial

moments of the concentration distribution, is not sufficient.

An essential input to the calculation of the field-scale

transport is the plume motion and/or BTC across the ‘
scale. The CTRW is a probabilistic approach for calculating

the latter based on a pdf of transition times (see section 2.1)

generated by the range of heterogeneities. The nature of the

transport, non-Fickian or Fickian, is determined by the

functional shape of the pdf.

2.1. Conceptual Picture: Tracer Transitions

[14] Contaminant motion in geological formations can be

treated by considering particles (which represent, e.g.,

dissolved solutes) undergoing various types of transitions.

These transitions encompass both the displacement due to

structure and heterogeneity as well as the time taken to

Figure 1. Photographs of a homogeneous, saturated sand
pack with seven dye tracer point injections being trans-
ported, under constant flow of 53 mL/min, from left to right.
Times at (a) t = 20, (b) t = 105, (c) t = 172, and (d) t =
255 min after injection. Internal dimensions of the flow cell
are 86 cm (length), 45 cm (height), and 10 cm (width).
Reprinted from Levy and Berkowitz [2003]. Copyright
2003, with permission from Elsevier.
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make the particle movement between, e.g., pores or fracture

intersections. We conceptualize transport as a series of such

particle transitions with a focus on retaining the full distri-

bution of the transition times. The variability in the hydrau-

lic and geochemical properties of the geological domain

cause a variety of particle transitions at velocity changes

within the flow field, between flowing and stagnant zones,

between mobile and immobile states, between macropores

and micropores, between fractures and adjacent host rock,

and by changes in advective paths at fracture and macropore

intersections. This picture of motion by transitions will be

referred to as ‘‘CTRW theory,’’ whereas the mathematical

formalism used to implement the motion will be called the

‘‘CTRW framework.’’

[15] Each transition can be quantified as w(s, s0), the rate

of particle transfer to position s from s0, and can be

considered on any spatial scale, e.g., on a pore scale

between pore positions through an interpore throat (i.e., a

‘‘tube’’). A multiple rate approach considers the range of

these rates {w}. At this point one can see the basic problem

in working with average rates in some representative region

or volume, traditionally referred to as a ‘‘representative

elementary volume’’ (REV). A particle ‘‘encounter’’ with

a sparsely distributed, very small rate w0 can have a large

impact on the overall transport, but w0 can be entirely

absent in a REV average of {w}; other problems with the

REV have been pointed out previously in the literature.

Thus the details of the distribution of {w}, or as we will

show the ensemble average of the {w} over all the config-

urations of a specific system, are key to the nature of the

transport. The variation in spatial displacements in the

distribution of w(s, s0) is small in the type of transport

typically encountered in geological formations. For exam-

ple, the ‘‘tube’’ lengths in the pore-scale model above have

a narrow distribution. However, the variation in rates (i.e.,

values of w(s, s0)), which is governed by the velocity

spectrum of the flow field, is very large for highly disor-

dered media; for example, the fluid flow distribution in the

‘‘tubes’’ governs the transit time between pore sites (see

section 3.8). Hence the temporal distribution of the pdf (i.e.,

the range of [w(s, s0)]�1) discussed at the beginning of

section 2 dominates the nature of the transport. The em-

phasis on temporal aspects of particle transport, induced by

the spatial heterogeneity, is a key feature of the CTRW

approach. We consider the significance of this emphasis

further when we contrast CTRW to the usual ADE frame-

work in section 6.1.

[16] For now, we picture tracer transport as a series of

discrete (in space) transitions. These can be defined natu-

rally, for example, as transitions through a fracture network

between fracture intersections. If we carefully retain the

temporal distribution of these transitions, this picture can be

expanded easily to a continuous-in-space formulation, as we

shall show in section 2.6.

2.2. Basic Formulation of Transport

[17] Our point of departure is a general framework that

can encompass all of the processes enumerated above as

special cases and reduce to the ADE for a ‘‘perfectly

homogeneous’’ medium. Defining this overarching frame-

work is a transport equation incorporating the full range of

{w} for any given realization of the domain,

@C s; tð Þ
@t

¼ �
X
s0

w s0; sð ÞC s; tð Þ þ
X
s0

w s; s0ð ÞC s0; tð Þ; ð1Þ

where C(s, t) is the normalized particle concentration or

probability at point s and time t in a specific realization of

the domain and the dimension of Ssw is reciprocal time.

[18] Equation (1) expresses a conservation of mass at

each site s and describes the rate of concentration change

at s as a function of the distribution of probabilities of

moving from s to s0 and from s0 to s. This equation is

known as the ‘‘master equation’’ (ME) [Oppenheim et al.,

1977; Shlesinger, 1996]. It has been utilized widely in the

physics and chemistry literature, e.g., electron hopping in

random systems [e.g., Klafter and Silbey, 1980a].

[19] In most of the applications considered here, the

transition rates describe the effects of the velocity field on

the particle motion. It is important to point out that the

transport equation (1) does not separate the effects of the

varying velocity field into an advective and dispersive part

of the motion.

[20] Specification of w(s, s0) involves detailed knowledge

of the system, i.e., characterization of the heterogeneities on

all length scales that influence the calculation of the flow

field. Below the ‘ scale we must resort to a statistical

description of this subdomain and hence to a distribution

of {w}. To realize this probabilistic approach, we consider

the ensemble average of (1), which can be shown [Klafter

and Silbey, 1980b] to be of the form

@c s; tð Þ
@t

¼�
X
s0

Z t

0

f s0 � s; t � t0ð Þc s; t0ð Þdt0

þ
X
s0

Z t

0

f s� s0; t � t0ð Þc s0; t0ð Þdt0; ð2Þ

where c(s, t) is the mean, ensemble-averaged, normalized

concentration and f(s, t) is defined in (7). The form of (2) is

a ‘‘generalized master equation’’ (GME) which in contrast

to (1) is nonlocal in time, that is, (2) contains an integral

over time requiring knowledge of the past state of the

concentration.

[21] The ensemble average of a set of local (in time)

kinetic equations (e.g., equation (1)) for a disordered system

leads to a nonlocal transport equation, because all of the

{w} are made available to each site and the role of w(s0, s) is

replaced by a function of time which depends on a distri-

bution of transit times between sites. Hence the ensemble

average of any set of equations describing the dynamics of a

physical model of a disordered system will lead to a

nonlocal equation. (For a simple example see section 7.1

(especially (90) and (91)).) The various nonlocal transport

equations often have similar form, but there is no intrinsic

relation between them as each depends on the physical
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model that generated them (see section 6.2). In fact, the use

of nonlocal equations for a broad class of transport prob-

lems has a long history [e.g., Zwanzig, 1960; Mori, 1965,

and references therein]. Applications more specifically

related to the present ones include those of Kenkre et al.

[1973], Montroll and Scher [1973], Scher and Lax [1973a],

Shlesinger [1974], Scher and Montroll [1975], and Klafter

and Silbey [1980a].

[22] The transition rates in (2) are time-dependent but

stationary, depending only on the difference s � s0. Hence,

depending on available knowledge of the system, ‘ can

range from meters to tens and hundreds of meters. As in (1),

note that in (2) there is no separation between an advective

and dispersive part of the motion.

2.3. CTRW Transport Equations

[23] Using the Laplace transform, it can be shown

[Kenkre et al., 1973; Shlesinger, 1974] that the GME (2)

is completely equivalent to a CTRW (see Appendix A)

R s; tð Þ ¼
X
s0

Z t

0

y s� s0; t � t0ð ÞR s0; t0ð Þdt0; ð3Þ

where R(s, t) is the probability per time for a walker to just

arrive at site s at time t and y(s, t) is the probability per time

for a displacement s with a difference of arrival times of t.

The initial condition for R(s, t) is ds,0 d(t � 0+), which can be

appended to (3). The y(s, t) is the basic pdf discussed at the

beginning of section 2; y(s, t) determines the nature of the

transport, as will be considered in applications below.

[24] A random walk with continuous time was introduced

by Montroll and Weiss [1965] using a distribution y(t) (see
(5)) for the step time. The generalization of the formalism,

i.e., the appearance of equation (3) with the joint distribution

y(s, t) and labeled ‘‘CTRW,’’ and the physical application to

transport, was first given by Scher and Lax [1973a]. Equa-

tion (3) describes a semi-Markovian process, Markovian in

space but not in time, which accounts for memory in particle

transitions. The CTRW reduces to a Markovian random walk

(see Appendix A) for a single rate, i.e., y(s, t) =

w(s)exp(�Wt) and W � Ss w(s) (see section 2.5).

[25] The correspondence between (2) and (3) is

c s; tð Þ ¼
Z t

0

Y t � t0ð ÞR s; t0ð Þdt0; ð4Þ

where

Y tð Þ ¼ 1�
Z t

0

y t0ð Þdt0 ð5Þ

is the probability for a walker to remain on a site,

y tð Þ �
X
s

y s; tð Þ ð6Þ

~f s; uð Þ ¼ u~y s; uð Þ
1� ~y uð Þ

; ð7Þ

where the Laplace transform (L) of a function f(t) is denoted
by ~f (u).

[26] Equations (3)–(5) are in the form of a convolution in

space and time and can therefore be solved using Fourier

(F ) and Laplace transforms [Scher and Lax, 1973a]. The

general solution, for periodic BCs in a lattice of size N (with

site positions s =
P3

j¼1 sjaj, sj = 1, 2, 3, . . ., N, and aj =

lattice constant), is

C k; uð Þ ¼ 1� ~y uð Þ
u

1

1� L k; uð Þ ð8Þ

where C(k, u) and L(k, u) are the Fourier transforms of
~c(s, u) and ~y(s, u), respectively, where for each component

of k the range of k values is ki = 2pli/N, and li is an

integer, �(N � 1)/2 � li � (N � 1)/2, for odd N. An input

of y(s, t) in L in (8) leads to the determination of c(s, t),

which represents the tracer plume concentration after a F
and L inversion. Because N is considered to be very large,

the solution (8) is regarded as being in the infinite domain,

vanishing at infinity. Solutions for a bounded domain and

for more general boundary conditions are developed in

sections 3 and 4. Note also that as N is very large, the

lattice constant can be arbitrarily small (we develop the

continuum limit in section 2.6), and, for example, y(s, t)
can have a range of many lattice sites. The lattice thus acts

as a ‘‘scaffold’’ to determine the solution (8) and does not

confine the spatial distribution of the plume.

[27] In addition to the determination of the concentration

plume (8), another key function in CTRW is the first-

passage time distribution F(s, t), the probability density

for a walker starting at the origin to reach s for the first time.

The solution in (8) is for periodic BCs; experiments and

observations often call for an absorbing BC or exit plane.

The main measurement for these experiments is the BTC,

which is equivalent to the F(s, t) evaluated on a plane (e.g.,

s1 = L).

[28] The implicit relation for F(s, t) is

R s; tð Þ ¼ ds;0d t � 0þð Þ þ
Z t

0

F s; t0ð ÞR 0; t � t0ð Þdt0; ð9Þ

which states that the walker arrives at s for the first time at

time t0 and in the remaining time t � t0, the walker can visit

and leave s an arbitrary number of times but ends at s.

Equation (9) contains a convolution in time, and so in

Laplace space the relation becomes an algebraic one that

is solved easily:

~R s; uð Þ ¼ ds;0 þ ~F s; uð Þ~R 0; uð Þ; ð10Þ

thus

~F s; uð Þ ¼
~R s; uð Þ � ds;0

~R 0; uð Þ
: ð11Þ

To obtain a BTC, we first consider that the walk starts from

a plane, e.g., s1 = 0, and evaluate F(s, t) at a fixed distance

s1 = L by summing over the other si directions (i > 1),

fB tð Þ � Ss2;s3F s1 ¼ L; s2; s3; tð Þ: ð12Þ
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A BTC in this paper will generally refer to the cumulative of

fB(t) over time.

2.4. Numerical Inversion of Laplace Transforms

[29] The analytical solutions developed in section 2.3, as

well as in sections 3 and 4, are of limited use in their

Laplace space form. We therefore need to invert these

solutions to the time domain. The inversion for the L
involves finding the solution g(t) of an integral equation

of the first kind [Krylov and Skoblya, 1977]:Z 1

0

g tð Þe�u tdt ¼ G uð Þ; ð13Þ

where G(u) is a given function of the complex parameter u.

[30] In a few important cases we can develop G(u) in an

asymptotic form, for small u behavior, and solve for g(t) for

large t by analytic means (see section 3). In general, we

must resort to numerical means. We use the de Hoog et al.

[1982] Laplace inversion algorithm, which makes use of

complex-valued Laplace parameters.

[31] The algorithm works as follows: Suppose that one is

interested in the solution for a range of times spanning from

tmin to tmax. This range of times is then discretized in a time

vector of arbitrary length N. It was observed that simulta-

neous inversion for times covering several orders of mag-

nitudes gives inaccurate results for the small times.

Therefore the algorithm splits the time vector for which

we want to obtain the concentrations into sections of the

same order of magnitude (usually a logarithmic cycle), and

the individual sections are inverted at a given time. So if the

time vector spans n orders of magnitude, the inversion

process will run n times. It is often a good idea to discretize

the time vector in such a way that its values are equally

spaced on a logarithmic scale.

[32] The solution of the complex-valued partial differen-

tial equation (pde) (e.g., (24), (33), or (73)) must be known

for a series of u values determined by the expression

uk;j ¼
1

2Tk
� log10 �þ j2p

ffiffiffiffiffiffiffi
�1

p� �
; ð14Þ

where Tk is the maximum time for the kth piece of time vector

(k = 1, . . ., n), and j = 1, . . .,m. The � parameter is typically of

the order of 10�9, andm is the number of terms in the Fourier

series expansion (obtained from the inversion integral using

the trapezoidal rule), typically in the range of 20 to 40. Note

that, for each of the n pieces, the complex-valued uk,j in the

above formula have an invariant real part and a variable

imaginary part where the Fourier series expansion is

calculated (with the use of an accelerated convergence

method of the algorithm [de Hoog et al., 1982]). Practically,

the user provides the full range of times and the numerical

inversion subroutine will call the pde solver n�m times, one

for each of the uk,j values determined by the above procedure.

The output is a series of concentration values at the

discretized times in the time vector.

[33] On the basis of the solutions discussed herein and the

work of Dentz et al. [2004] and Cortis et al. [2004b], we

have developed a CTRW ‘‘toolbox’’ [Cortis and Berkowitz,

2005] that provides a collection of easy-to-use MATLAB

scripts and functions to calculate the full temporal

and spatial behavior of a migrating tracer. The CTRW

toolbox is freely available at http://www.weizmann.ac.il/

ESER/People/Brian/CTRW.

2.5. Relation Between Y(s, t) and w(s0, s)

[34] The identification of y(s, t) lies at the heart of the

CTRW formulation, as it defines the nature of the plume

properties. We will show in section 3 that the distribution of

t in y(s, t) is the essential feature because it captures the

often large range of the values of w(s0, s). Clearly, the

underlying permeability distribution of the domain gives rise

to the velocity distribution, which thus includes naturally all

correlations affecting transport. In the CTRW formulation the

velocity distribution is used to define the spectrum of w and

hence y(s, t). In section 2.1 we outlined the qualitative

features that can give rise to anomalous transport: the

sufficient encounter of a tracer with a relatively rare slow

rate (w0) or zone. We now quantify this qualitative statement

by showing the relation between y(s, t) and w(s0, s).

[35] To show the general relation between y(s, t) and

w(s0, s), we rewrite the master equation (1) (which is for a

specific representation) as a random walk equation to obtain

a transition length and time distribution ys0,s(t) of the form

ys0;s tð Þ ¼ w s0; sð Þ exp �t
X
s00

w s00; sð Þ
" #

: ð15Þ

In this equation (derived in Appendix B), ys0,s(t) plays the

role of y(s, t), but it is dependent on the location; that is,

each neighborhood is different in a specific representation.

[36] Furthermore, we can then write

ys tð Þ ¼
X
s0

w s0; sð Þ exp �t
X
s0

w s0; sð Þ
" #

¼ � dQs

dt
; ð16Þ

where

Qs � exp �t
X
s0

w s0; sð Þ
" #

ð17Þ

y tð Þ ¼ � d

dt
Qs½ �½ �; ð18Þ

with double brackets denoting an ensemble average. In

general, it is very difficult to carry out the ensemble average

in (18), e.g., over a specified flow distribution. When the

transitions are within a specific configuration of random

spatial locations or sites, one can calculate the ensemble

average exactly; see below for the results of this calculation

and section 3.5 for a hydrological application.

[37] The simplest possible model for y(t) corresponds to
the use of an average rate or an ordered case of lattice site

positions with w(s0, s) = w(s0 � s) and the total rate W =
�s0w(s

0, s) in (16), i.e., an exponential of the form y(t) = W

exp(�Wt) and ~y(u) =W/(W + u). In this ordered or averaged

case, (15) can be written as y(s, t) = w(s)exp(�Wt), and

therefore (7) becomes ~f(s, u) = w(s), independent of u.
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Hence (2) becomes local in t and is equal to (1) with rates

w(s0 � s); see also Appendix A.

[38] In contrast, a u dependence of ~f(s0 � s, u) derives

from a range of rates, which characterize a disordered

system. To generate this range, we can maintain a w(s0 � s)

but now have a random spatial distribution of sites. We

consider the ensemble average over all possible distribu-

tions of sites in a domain with site density Ns of [[Qs]] in

(18), evaluating it analytically to obtain [Scher and Lax,

1973b]

Qs½ �½ � ¼ exp �Ns

Z
1� exp �w sð Þtð Þ½ �d3s

	 

: ð19Þ

[39] To evaluate (19) further, we choose a standard

transition rate between local sites,

w s0 � sð Þ ¼ wm exp �js0 � sj=roð Þ; ð20Þ

where ro is the range of the transitions and wm is the

maximum rate. Substituting (20) into (19) and then (18), we

derive [Cortis et al., 2004a],

y tð Þ
wm

¼ z3F3
1; 1; 1
2; 2; 2

;�t
� �

e
�zt4F4

1;1;1;1

2;2;2;2
;�t

� �
; ð21Þ

where t � wmt, z � 4pNsro
3, and pFq is the generalized

hypergeometric function in standard notation as defined by

Abramowitz and Stegun [1970] and shown in Figure 2.

Equation (21) will be referred to as the h function, as

discussed in section 3.5. Figure 3 illustrates the behavior of

(21); one can observe that for the lower values of z, y(t)
varies slowly, i.e., as a power law �t�1�b, where b is a

parameter that is discussed at length below. There are large

ranges of t where b can have a value between 0 and 2; this

will be an important aspect of the transport model (see

section 3). The parameter z can be seen to be a measure of

the disorder in the system or, more precisely, the range of

rates.

[40] For transition rates of the form (20) the range of rates

depends on an interplay between the spatial extent of the

transition, ro, and the average site separation, rN, where

4pNs/3 � rN
�3 [Scher and Lax, 1973b]. The parameter z can

be written as z = 3(ro/rN)
3, and for ro � rN the rates are

sensitive to the separations between sites and hence

generate a wide range of rates. For each value of z, there
is a tc such that the effective b is greater than 2 for t > tc,
and the transport evolves to normal Gaussian behavior.

Thus b should be seen as an effective parameter describing

the asymptotic behavior of y(t) over a time range

corresponding to the duration of the observation. The large

t or asymptotic behavior of (21) is [Scher and Lax, 1973b]

y tð Þ
wm

¼ z ln ctð Þ2 þ a2

h i
�
exp � 1

3
z ln ctð Þ3þ3a2lnctþ 2a3

h in o
t

; ð22Þ

where c, a2, and a3 are constants.

[41] In the CTRW formalism the term asymptotic refers

to the large t limit (which effectively can set in for values of

t5 10) or in Laplace space the small m (� u/wm) limit, e.g.,

m < 0.1. In practice therefore the asymptotic domain covers

most laboratory and field measurements. Note that in the

literature that deals with dispersion (see section 3.7) the

term ‘‘asymptotic’’ typically refers to the regime where an

effective macrodispersion can be defined; to make a clear

distinction, we will henceforth refer to this latter regime as

the ‘‘macrodispersion regime.’’

[42] At large enough time the transport in a real physical

system will become normal if the medium has a largest

heterogeneity scale; in other words, at length scales suffi-

ciently greater than the largest heterogeneity scale, the

medium acts as a more ‘‘homogeneous’’ one. In terms of

CTRW the effective b has a slowly varying time depen-

dence (on ln t [see Scher et al., 2002a]) and increases as

t ! 1. We shall document this behavior in detail with a

simpler form of y(t), the truncated power law function (61)

in section 3.7. In section 3.5 we shall develop a

hydrological application of (21), with a coarse graining of

Figure 2. Plot of the 3F3 and 4F4 functions in (21) versus
dimensionless time t [after Cortis et al., 2004b].

Figure 3. Evolution of the dimensionless transition
probability y(t)/wm versus dimensionless time t in (21)
for different values of the z parameter. The dashed line
represents the exponential limit of the function for z = 1.5.
Modified and reprinted with permission from Cortis et al.
[2004a] (http://dx.doi.org/10.1103/PhysRevE.70.041108).
Copyright 2004 by the American Physical Society.

RG2003 Berkowitz et al.: MODELING NON-FICKIAN TRANSPORT

7 of 49

RG2003



a porous medium and an account of local velocity

fluctuations [Cortis et al., 2004a].

2.6. CTRW in a Partial Differential Equation Form

[43] In section 2.1 we indicated that the CTRW formal-

ism can be extended easily to continuous-in-space formu-

lations. We now discuss a convenient pde form of the

CTRW equations.

[44] Many transport problems that are modeled with

CTRW have a y(s, t) that allows all spatial moments to

exist, while in many cases not even the first temporal

moment exists (or it is very large). We discuss this issue in

section 3.3. As a consequence a good approximation to

c(s0, t) is a Taylor expansion over the finite range of the

transition rates:

c s0; tð Þ � c s; tð Þ þ s0 � sð Þ � rc s; tð Þ

þ 1

2
s0 � sð Þ s0 � sð Þ : rrc s; tð Þ; ð23Þ

with the dyadic symbol (colon) denoting a tensor product

(see Appendix C for an example) [Berkowitz et al., 2002].

[45] It can be shown that insertion of (23) into (2) yields

in Laplace space [Berkowitz et al., 2002; Dentz et al., 2004]

u~c s; uð Þ � c0 sð Þ ¼ �v* uð Þ � r~c s; uð Þ þ D* uð Þ : rr~c s; uð Þ; ð24Þ

where we define an advective component

v* uð Þ �
Z

~f s; uð Þs dds ð25Þ

and a dispersive component

D* uð Þ �
Z

~f s; uð Þ 1
2
ss dds: ð26Þ

Note the sum over s0 in (2) is independent of s in a

stationary system; hence we shift the summation variable to

obtain (25) and (26).

[46] Observe that (2) does not separate the transport into

advective and dispersive components of the motion. Here,

too, the separation is only apparent. In fact, the u

dependence of (25) and (26) indicates that the nonlocality

in time (see discussion following (2)) applies to both the

advective and dispersive parts of the motion, where v*(u)

and D*(u) are different spatial moments of the same

distribution ~f(s, u) and are hence connected.

[47] The quality of the approximation (23) depends on

the boundedness of the derivatives of c(s, t) in a sphere of

radius s0 around each point s and on the boundedness of the

spatial moments of y(s, t). The particular formulation in

(24) is convenient because we can define terms that are

familiar in the context of traditional modeling: the

‘‘effective velocity’’ v*(u) and the ‘‘dispersion tensor’’

D*(u). Note, however, that both of these quantities are

u-dependent and, most significantly, depend fundamentally

on ~y(s, u) (recall (7)). This equation has the form of an

ADE generalized to nonlocal time responses as a result of

the ensemble average. Solutions of (24) can be obtained for

general BCs, and so it is an important starting point for the

analysis of transport problems.

[48] A similar expansion to (23), for a single realization,

together with a similar Taylor expansion of w(s, s0), can be

substituted into (1) [Berkowitz et al., 2002] to yield

@C s; tð Þ
@t

¼ �v sð Þ � rC s; tð Þ þ r � r D sð ÞC s; tð Þ½ �; ð27Þ

where v(s) is the velocity field and D(s) is the dispersion

tensor; both are defined by Berkowitz et al. [2002] in terms

of spatial moments of w(s, s0) and hence are dominated by

the large values of w. Equation (27) is a generalization of

the ADE which we shall use in section 4.

[49] In many instances we can assume that the transition

rate probability can be applied in the decoupled form

y(s, t) = p(s)y(t), where p(s) is the probability distribution

of the length of the jumps and y(t) is the probability rate

for a transition time t between sites. The coupling

between the spatial displacement and the transition time

involves a velocity that correlates very weakly, if at all,

with jsj; for example, the v (magnitude of the velocity)

acts as an independent random variable and hence

diminishes the coupling between jsj and t. Especially in

an highly heterogeneous system, the rate-limiting steps are

due to the statistically rare events such as the encounter

with a low-velocity region, and these longer times are not

correlated with the spatial displacements. As an example

(see section 3.8), in a pore-level picture the variation of

spatial displacements (the throat between pores) is rather

narrow, while the variation of the time of transit between

these pores can be very large because of the extended 1/v

tail of the velocity histogram. The low v range which limits

the transport does not necessarily occur with larger or

smaller interpore displacements. The time is not controlled

by the length of the displacement but rather the v in the

throat. More detailed discussion of the assumption of

decoupling is given in section 3.3, where we focus on
L[y(s, t)] = ~y(u)p(s), where �sp(s) = 1.

[50] Using the decoupled form y(s, t) = p(s)y(t), we can
rewrite the generalized velocity and dispersion as [Berkowitz

et al., 2002; Dentz et al., 2004; Cortis et al., 2004b]

v* uð Þ ¼ ~M uð Þvy ð28aÞ

D* uð Þ ¼ ~M uð ÞDy; ð28bÞ

where

~M uð Þ � �tu
~y uð Þ

1� ~y uð Þ
ð29Þ

is a memory function and

vy ¼ 1

�t

Z
p sð Þs dds ð30aÞ

Dy ¼ 1

�t

Z
1

2
p sð Þss dds ð30bÞ
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(we have multiplied and divided by a characteristic time �t
[Berkowitz et al., 2002]; see further discussion of �t in

section 3). It will be useful in the following to combine the

equations in (30) in the form

Dy ¼

Z
p sð Þs dds

���� ����
�t

Z
1

2
p sð Þss ddsZ
p sð Þs dds

���� ���� � ayjvyj; ð31Þ

where the tensor

ay ¼

Z
1

2
p sð Þss ddsZ
p sð Þs dds

���� ���� ð32Þ

has the dimension of length.

[51] As stated in the beginning of this section, the basis

for the approximation (23) is the existence of the spatial

moments of y(s, t). In the decoupled form this requires p(s)

to possess finite moments. The first two of these moments

(in (30)) define coefficients of the transport velocity and

dispersion. The p(s) can otherwise be a general positive

function including one with a long tail (with a large s

cutoff). The choice of a Gaussian for p(s) used later in (63)

is simply a convenience for the numerical simulation.

[52] The working transport equation for an ensemble-

averaged system is (24) with the definitions (28)–(30),

u~c s; uð Þ � c0 sð Þ ¼ � ~M uð Þ vy � r~c s; uð Þ � Dy : rr~c s; uð Þ
� �

:

ð33Þ

It is important to recognize that the ‘‘transport velocity’’ vy
is distinct from the ‘‘average fluid velocity’’ v, whereas in

the classical advection-dispersion picture these velocities

are identical. Similarly, the ‘‘dispersion’’ Dy has a different

physical interpretation than in the usual ADE definition.

The flux j is defined through @c/@t = �r � j, so that

~j s; uð Þ � ~M uð Þ vy~c s; uð Þ � Dy � r~c s; uð Þ
� �

: ð34Þ

[53] A key feature of (33) is that it encompasses various

common models, such as multirate and mobile-immobile

transport equations [e.g., Villermaux, 1974, 1987] for

specific examples of ~M (u) (or ~y(u)), together with other

simplifications. These issues are discussed in section 7.

[54] Observe also that if desired, one can avoid the use of

Laplace transforms by working directly in the time domain,

i.e., solving the L�1 of (33):

@c s; tð Þ
@t

¼ �
Z t

0

M t � t0ð Þ vy � rc s; t0ð Þ � Dy : rrc s; t0ð Þ
� �

dt0:

ð35Þ

[55] The solution of (33), ~c(s, u), can now be expressed

[see Dentz et al., 2004, Appendix B] in terms of ~c1(s, u),

which is the solution of (33) for ~M (u) = 1 and the same BCs

as ~c(s, u):

~c s; uð Þ ¼ 1

~M uð Þ
~c1 s;

u

~M uð Þ

� �
: ð36Þ

As noted in section 2.5, the form for y(t) corresponding to

the ordered case is an exponential y(t) = W exp(�Wt).

Inserting ~y(u) = W/(W + u) into (29), one obtains ~M (u) = 1

with �t = W�1. In this perfectly ordered case, (33) is formally

equivalent to the classical ADE. Thus a u dependence of
~M (u) derives from a range of rates which characterize a

disordered system.

[56] We now exhibit the analytic solutions of (33) for

different spatial dimensions and simple BCs. (Several other

explicit formulas for resident and flux-averaged concentra-

tions involving BCs on the flux (34) at an injection and a

control plane are given by Dentz et al. [2004]. We assume

that vy is aligned in the one direction of the coordinate

system, vy,i = vy di1, and Dy,ij is diagonal with Dy,11 � Dy
L

and Dy,ii � Dy
T, i > 1, where the superscripts L and T denote

longitudinal and transverse, respectively. As a BC in an

infinite domain we assume a vanishing c(s, t) at infinity; as

an initial condition, c(s, 0) = d(s). Thus, with the above

definitions, the solution to (33) reads for one dimension

~c s1; uð Þ ¼
exp � vy

2Dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 4 s21

uDy

~M uð Þ v2y

s
� s1

 !" #

~M uð Þ vy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

uDy

~M uð Þ v2y

s : ð37Þ

In two dimensions we obtain

~c s; uð Þ ¼
exp

s1 vy

2DL
y

 !
2p ~M uð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DL

y D
T
y

q
� K0

vy

2DL
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ

DL
y

DT
y
s22

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

uDL
y

~M uð Þ v2y

vuut0@ 1A; ð38Þ

where K0(z) is the modified Bessel function [Abramowitz

and Stegun, 1970], while for three dimensions the L of the

concentration distribution is given by

~c s; uð Þ ¼ 4p ~M uð ÞDT
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ

DL
y

DT
y

s22 þ s23
! "s !�1

� exp
"
� vy

2DL
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ

DL
y

DT
y

s22 þ s23
! "s 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

uDL
y

~M uð Þ v2y

vuut � s1

!#
; ð39Þ

where Dy
T values in the two directions orthogonal to the

principal flow direction are assumed equal. Note that (37)–
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(39), which are valid for arbitrary ~y(u), enable study of the

full time behavior of c(s, t) in one to three dimensions by

numerical Laplace inversion (L�1).

3. MODELS OF Y(s, t) AND APPLICATIONS TO
LABORATORY AND FIELD EXPERIMENTS

[57] We have discussed in section 2 how y(s, t) is the

heart of the CTRW. We noted in section 2.1 that particle

transitions are influenced by a wide range of mechanisms,

and in section 2.5 we related these transitions to y(s, t).
Thus y(s, t) can, in principle, be defined to account for

advective, diffusive, and/or dispersive displacement over a

wide range of timescales. Specifically, y(s, t) can account

for transport in both fully and partially saturated media in

domains containing flowing and stagnant (mobile and

immobile, fracture, and host rock) zones. Moreover, one

can define a y(s, t) that includes effects of sorption [e.g.,

Margolin et al., 2003]. We now consider in this section

specification of y(s, t) and application of CTRW to a variety

of laboratory and field measurements.

3.1. Definition of Y(s, t) for a Fracture System

[58] A relatively simple physical example that allows

specification of y(s, t) is transport in a ‘‘random’’ fracture

network (RFN) [Berkowitz and Scher, 1997, 1998; Scher et

al., 2002a]. Such discrete fracture conceptualizations have

proven useful in a variety of situations [e.g., National

Research Council, 1996]. We picture a RFN as an extended

set of intersecting channels, tubes, or discs filled with a fluid

in steady flow. We then characterize the RFN by a

distribution of fracture fragments (the lengths between

intersections) f(s) and by a velocity histogram (the

distribution of velocities in each tube fragment) F(x, q),

where x = 1/v (with v the magnitude of the velocity) and q is
the angle orientation of the fragment with respect to the

pressure gradient (jsj = s, sx = s cos q). The transition time is

simply the time of transit in each fragment. Thus

y s; tð Þ ¼ CnF x; qð Þf sð Þ; ð40Þ

where Cn is a normalization constant and t = sx.
[59] A simplified version of the function we used to fit

simulation data [Berkowitz and Scher, 1997, 1998; Scher et

al., 2002a] is

F x; qð Þ / x�1�b exp �xo= x cos2
q
2

� �� �
; ð41Þ

where b characterizes the width of the distribution at low

velocities (b � 0.9 for the simulations and b ’ 1

2
for the data

given by Scher et al. [2002a]) and f(s) / s1/2e�s/so. The
parameters in the distributions can be used to form
dimensionless variables characteristic of this problem: the
time ! t � t/�t, the Laplace variable u ! m � �tu,

where �t � 1

2
so xo, and the displacement ! r � s/so.

Typically, �t represents the median time for one transition.
In the applications we will be interested in particle
transport after many transitions, i.e., t � 1, hence the
range m � 1.

[60] The general solution for the plume (8) with periodic

BCs requires both the F and L of y(s, t). The L[y(s, t)] can
be determined analytically:

~y s; uð Þ ¼ C0
n|

1=2e�|| cosb
q
2

� � ffiffiffiffiffiffiffiffi
2|m

p� �b
Kb 2

ffiffiffiffiffiffiffiffi
2|m

p
= cos

q
2

� �
;

ð42Þ

where Kb(x) is the modified Bessel function of order b. The
F (~y(s, u)) must be evaluated numerically, and finally, the

plume c(s, t) is determined by the inverse F and L of (8).

We show in Figure 4 a plot of the vertical average of the

plume c(x, t) for four large values of t and for b =
1

2
. The

plume is highly non-Gaussian, a characteristic of anomalous
transport that will be detailed in section 3.2. This plume
shape was seen clearly in simulations of particle migration
in a RFN, as shown in Figure 5. The b of the simulations
shown in Figure 5 corresponds to a value of b � 0.8. For

values of
1

2
< b < 1 the peak moves (as opposed to the

curves shown in Figure 4), and the mean position moves
faster than the mean position of the plume in Figure 4.
Hence the comparison between Figures 4 and 5 is
qualitative.

3.2. Asymptotic Behaviors

[61] Recall that as discussed in section 2.5, the term

‘‘asymptotic’’ is used to refer to the long time, or small m,
behavior in terms of the particle transitions. The source of

the non-Gaussian behaviors discussed previously can be

seen from (42) in the limit m ! 0, i.e., t ! 1:

L 0; uð Þ ’ 1�
ffiffiffiffiffiffi
2p

p 16

5
m1=2 � 7m ln mð Þ þ O mð Þ: ð43Þ

Figure 4. Profiles of the spatial distribution of tracer,
c(s1, t), determined from the CTRW solution for b = 0.5,
at four relative times t = 1, 2.5, 10, and 37.5. The
concentration profile, c(s1, t), is the vertical average (along
the s2 axis) of c(s, t) in arbitrary units; particle injection
point is at s1 = 0. Reprinted from Berkowitz and Scher
[1998] (http://dx.doi.org/10.1103/PhysRevE.57.5858).
Copyright 1998 by the American Physical Society.
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The first temporal moment (mean time) of �sy(s, t) (� y(t),
see (5)) t̂ is equal to the derivative dL(0, u)/duju=0. For (43),
t̂ diverges, which is also the case for

~y uð Þ �!m!0
1� cbmb; 0 < b < 1; ð44Þ

where cb is a constant. The exact low m expansion of (42) is

carried out in Appendix D.

[62] The behavior in (44) originates in the form of the

low-velocity tail x�1�b in (40) and (41), which yields

y tð Þ / t�1�b; t�!1: ð45Þ

Hence, if there is a sufficient range of a slow (i.e., algebraic)

t dependence such as in (45), one has either a divergent t̂ or

one that is larger than the duration of the observation. This

leads to a transport that is effectively independent of a

characteristic time. In Appendix E we present a general

derivation of (44) from (45).

[63] For the large t dependence in (45) we have for the

mean displacement �‘(t) and standard deviation �s(t) of the
plume c(s, t) that [Shlesinger, 1974]

�‘ tð Þ / tb; �s tð Þ / tb; t�!1; 0 < b < 1: ð46Þ

This behavior is in sharp contrast to Gaussian models,

where �‘(t) / t and �s(t) / t1/2 as an outcome of the central

limit theorem; in this case the position of the peak of the

distribution coincides with �‘(t). It is worth noting that

the range 1 < b < 2 is also a non-Fickian regime for

although �‘ (t) / t, the standard deviation is �s(t) / t(3�b)/2,

which is not the Gaussian case.

[64] We note here, for completeness, that to quantify

diffusion-only systems, we can set vy = 0 in (33) and use

a y(t), defined for 0 < b < 1, based on pure diffusion. In this

case, �‘(t) = 0 and �s(t) / tb/2 [Shlesinger, 1974], as opposed

to tb in the advective transport case given by (46). Recent

detailed developments considering anomalous diffusion are

described elsewhere [Metzler and Klafter, 2004; Hornung et

al., 2005].

[65] It is important to recognize that because of non-

locality the use of time-dependent coefficients in a conven-

tional pde, e.g., as was done with the ADE [see Dagan and

Neuman, 1997], is conceptually incorrect; rather, a nonlocal

pde of the form in (35) is required. If the t dependence of

y(t) follows the form in (45) over the duration of the

observations then the transport will be anomalous.

[66] Use of the asymptotic form (44) simplifies the

calculation of fB(t) in (12),

fB tð Þ ¼ 1

2pi

Z sþi1

s�i1
emt exp �cbLmb=�l

! "
dm; ð47Þ

for s > 0 and 0 < b < 1 [Montroll and Scher, 1973; Scher

and Montroll, 1975]. The fB(t) in (47), valid in the

asymptotic limit, is equal to one of the Fox H functions

[Metzler and Klafter, 2000].

[67] It is expedient to work directly with the L�1 in (47),

which can be evaluated by using highly accurate, approx-

imate methods. The results for (47) and the integral of

fB(t) (the flux at s1 = L due to a constant initial flux at s1 = 0)

are shown in Figure 6. Instead of a Fickian solution, there is

an entire family of distributions, one for each value of b (0 <
b < 1). For b � 0.5 the dispersion is very large. As b ! 1,

the long time tail diminishes sharply. For 1 < b < 2 one adds

to the mb term in (47) a term proportional to m, and for b > 2

one adds a term proportional to m2. As b! 2, the dispersion

becomes Fickian.

[68] The parameter b is, in effect, a measure of the

dispersion in conjunction with Dy. It determines the char-

acteristic shape of the BTC and not just the second moment

of the distribution. We have used these results to fit

Figure 5. Profile of the spatial distribution of tracer at two
relative times (t = 1, dots, and t = 2.5, crosses), determined
from numerical simulations of particle transport in a two-
dimensional, random fracture network. The concentration
profile, c(s1, t), is the vertical average (along the s2 axis) of
c(s, t) in arbitrary units; particle injection point is at s1 = 0.
Reprinted from Berkowitz and Scher [1998] (http://
dx.doi.org/10.1103/PhysRevE.57.5858). Copyright 1998
by the American Physical Society.

Figure 6. Semilog plot showing a range of cumulative
fB(t) curves, relative concentration versus dimensionless
time, for several values of b. Reprinted from Kosakowski et
al. [2001]. Copyright 2001, with permission from Elsevier.
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laboratory and field data of both porous media and fracture

networks, as discussed in sections 3.4 and 3.6.

3.3. Coupled and Decoupled Y(s, t)

[69] In section 2.6 we introduced the ‘‘decoupled’’ form

of y(s, t), i.e., ~y(s, u) � p(s)~y(u), where p(s) denotes the

transition length distribution. In the RFN problem we

developed a ‘‘coupled’’ form in (42). We now examine the

nature of the approximation of a decoupled form

in comparison to the coupled one in the asymptotic limit

m ! 0.

[70] Expanding the Bessel function as carried out in

Appendix D, the small m (� �tu) behavior (for b < 1) of

(42) takes the form

~y s; uð Þ � p1 sð Þ � p2 sð Þmb

~y uð Þ � 1� �cbmb;
ð48Þ

where p1(s) � ~y(s, 0) and the constant �cb = �sp2(s). The

exact forms of p1(s) and p2(s) for (42) appear in (D6). We

substitute the forms in (48) into (25), where ~f(s, u) is given
in (7), to obtain

v* uð Þ � �cb
! "�1

u �sm�b � �s0
� �

� �cb
! "�1m1�bvy; ð49Þ

with �s = �ssp1(s), �s
0 = �ssp2(s), and vy � �s/�t. Notice that to

leading order in the small m limit we drop the higher-order

term in (49). The singular behavior of (49) is controlled by

the denominator in (7). In the asymptotic limit these

statements are true for a general ~y(s, u).
[71] Consider now the decoupled joint pdf, ~y(s, u) =

p(s)~y(u) � p(s)[1 � cb(�t
0u)b], with cb a constant. We find

that we can reproduce the result in (49) with this decoupled

form if we set the first moment of p(s) equal to that of p1(s),

recalling also that m � �tu. In other words, in the small m
limit we see that the decoupling of y(s, t) simply modifies �s
and �t, with �t0 ! �t(�cb/cb)

1/b.

[72] Hence, because the moment �s is chosen to corre-

spond to the mean size of the heterogeneous distribution

(for the ensemble-averaged system) and the �t is a charac-

teristic median time for a transition, we can justify, in most

situations, the use of the decoupled form y(s, t) = p(s)y(t) if
the low m behavior of the coupled y(s, t) has the form (48).

Recall also the discussion on the lack of correlation between

s and v in the paragraph preceding the one containing (28).

3.4. Laboratory and Field Experiments

[73] The solutions given at the end of section 3.2, and

demonstrated in Figure 6, are a key result, convenient for

describing a wide range of transport experiments. These

CTRW solutions are based on an asymptotic (algebraic)

form of y(t) given by (44). In sections 3.4.1 and 3.4.2 we

exhibit the application of these solutions to measured BTCs

from both field- and laboratory-scale experiments.

[74] It is notable that similar CTRW solutions have been

implemented in a variety of studies. In addition to those

described throughout sections 3.4–3.8 and section 4,

CTRW has successfully quantified tracer transport in par-

tially saturated porous medium columns [Bromly and Hinz,

2004] and in single fissures [Jiménez-Hornero et al., 2005],

transport of sorbing tracers in porous medium columns

[Hatano and Hatano, 1998], and transport of colloids in a

shear zone [Kosakowski, 2004], as well as numerically

simulated transport of tracers in faults [O’Brien et al.,

2003a, 2003b] and in heterogeneous media [Di Donato et

al., 2003; Bijeljic and Blunt, 2006].

3.4.1. Field Experiments
[75] We consider a field application that follows naturally

from the discussion in section 3 on transport in a RFN. Sidle

et al. [1998] report on a field-scale tracer test in a fractured

till of glacial origin. The matrix permeability of the till is low

and therefore water flow is attributed mainly to the fractures.

The system is conceptualized as consisting of layers that

become less densely fractured and perturbed with depth.

However, variation in the hydraulic properties of these layers

is unknown, as is the degree of fracture connectivity and the

hydraulic properties of individual fractures.

[76] In the field experiment a block of till was excavated

and horizontal multiple-port samplers were installed at

depths of 2.5 m (relatively heavily fractured) and 4.0 m

(less fractured). An infiltration basin installed near the

ground surface was used to establish steady state inflow

conditions. A chloride tracer was then infiltrated for 7 days,

during which water samples were collected and BTCs were

recorded. A detailed description of the site and the tracer

test is given by Sidle et al. [1998].

[77] Typical BTCs for the sampling locations at the 2.5

and 4.0 m depths (screens, B1 and F4, respectively) are

shown in Figure 7. These BTCs were analyzed by Sidle et

al. [1998] using best fits by the one-dimensional ADE,

referred to as equivalent porous medium (EPM) model, and

by a discrete fracture model (DFM) based on a parallel

fracture conceptualization. The DFM, which assumes

advective transport in the fractures, with diffusion into

and within the host matrix, is in some sense more flexible

than the EPM, because it allows also for prescription of

combinations of fracture aperture and fracture spacing.

However, as seen from Figure 7, neither of these approaches

captures the full evolution of the measured BTCs. More-

over, in both cases, estimated model parameter values (e.g.,

water velocity, dispersivity, fracture aperture, and fracture

spacing) for the various BTCs varied over more than 1 order

of magnitude, with differences of up to 2 orders of

magnitude in estimated water velocities between the EPM

and DFM models.

[78] The heterogeneous nature of the medium and the

non-Fickian nature of the transport reflected in these BTCs

suggest consideration of the CTRW conceptual picture and

framework. As discussed in detail by Kosakowski et al.

[2001], such a treatment is indeed effective. Figure 7

displays fits to the BTCs using the CTRW solution (47),

which is based on the asymptotic form of y(t) given by (45).
The estimated values of b that fit the BTCs are significantly

smaller than unity, indicating a clear non-Fickian transport

behavior. As discussed in section 3.2, smaller values of b
are indicative of more dispersive, heterogeneous systems.
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Accordingly, the smaller b value for screen F4, relative to

that for the screen B1 BTC, is consistent with the initial

geological mapping of Sidle et al. [1998], which indicated

sparser, more heterogeneous fracturing at the greater depth.

[79] Another application of CTRW solutions has been to

analysis of measurements from a large-scale field study in a

heterogeneous alluvial aquifer at the Columbus Air Force

Base (Mississippi), otherwise known as the ‘‘Macrodisper-

sion Experiment’’ or ‘‘MADE’’ [Adams and Gelhar, 1992].

Bromide was injected as a pulse and traced over a 20 month

period by sampling from an extensive three-dimensional

well network. The tracer plume that evolved was remark-

ably asymmetric and cannot be described by classical

Gaussian models.

[80] Figure 8 displays a direct comparison of the advance

of the measured tracer plume and the CTRW solution, using

b = 1/2, at two times. The CTRW solution was fit approx-

imately to the data at t = 49 days. Because of the noise in the

measurements (the sharp peaks of the tracer data are largely

an artifact of the coarse sampling step sizes) more precise

fitting is not justified. The comparison to the data at t = 370

days represents a prediction of the CTRW solution, using

the same parameters as fit previously and just increasing the

time. Clearly, the CTRW formulation quantitatively cap-

tures the plume behavior. Full details of the analysis of these

data are given by Berkowitz and Scher [1998].

[81] The connection between the non-Fickian transport

measured at the Columbus field site and the CTRW frame-

work can be strengthened further by considering the time

dependence of the spatial mean and standard deviation of

the field plumes. Analyzing the behavior of the measured

mean displacement �‘(t) and standard deviation �s(t), along
the longitudinal principal axis of the tracer plume, it was

found [Berkowitz and Scher, 1998] that they both scale as

�t0.6±0.1 in accordance with (46).

Figure 7. Best fit theoretical BTCs based on solutions for
the equivalent porous medium (EPM = ADE), the discrete
fracture model (DFM), and the CTRW (with b = 0.49 for
screen B1 and b = 0.39 for screen F4). Dots indicate
measured values. Screens B1 and F4 were located at depths
of 2.5 and 4 m, respectively. Reprinted from Kosakowski et
al. [2001]. Copyright 2001, with permission from Elsevier.

Figure 8. Comparison of the advance of the measured
tracer plume (dashed line, Columbus Air Force Base field
data from Adams and Gelhar [1992]) and the CTRW solution
with b= 0.5 (solid line): (top) t= 49 and (bottom) t= 370 days.
Reprinted with permission from Berkowitz and Scher [1998]
(http://dx.doi.org/10.1103/PhysRevE.57.5858). Copyright
1998 by the American Physical Society.

RG2003 Berkowitz et al.: MODELING NON-FICKIAN TRANSPORT

13 of 49

RG2003



[82] The CTRW plume shape precludes the need to

assume that the bromide was injected initially into a low-

permeability region. Furthermore, the long forward tail,

which eludes detection, can be the reason for the reported

loss of tracer mass. In spite of the uncertainty surrounding

this data set the CTRW analysis effectively accounts for the

time-dependent plume pattern.

3.4.2. Laboratory Experiments
[83] Over the last 5 decades many dispersion experiments

have been performed in small-scale columns and flow cells

with dimensions of up to several tens of centimeters in

length. As mentioned in section 1, measurements of trans-

port in a variety of porous medium packing arrangements

have formed the basis for development of modeling trans-

port behavior, but an accounting of the heterogeneities that

occur even at small scales has not been sufficient. Indeed,

the non-Fickian transport behavior shown in Figure 1

clearly demonstrates fundamental properties that must be

treated in a transport theory.

[84] Silliman and Simpson [1987] provide a specific set

of measurements that demonstrate non-Fickian transport

due to small-scale heterogeneities in porous sand packs. The

reported BTCs were analyzed subsequently by Berkowitz et

al. [2000], using a CTRW solution identical to that used in

section 3.4.1. Three BTCs measured at increasing distances

from the inlet boundary were examined. In each case the

transport behavior was captured, with b � 0.87 ± 0.01.

More detailed BTC measurements are reported and

analyzed by Levy and Berkowitz [2003].

[85] In particular, Levy and Berkowitz [2003] measured

BTCs in the ‘‘homogeneous,’’ uniform sand pack system

shown in Figure 1, finding subtle yet measurably significant

differences from Fickian behavior and transport described

by the ADE. Another key feature of the experiments is the

measurement of BTCs for different flow rates (water

velocities). Figure 9 shows fitted values of b for different

flow rates, contrasting fits of CTRW and ADE, again using

the CTRW solution (47). Two specific features are apparent

in Figure 9. First, b < 2, indicating clear non-Fickian

transport behavior even in a ‘‘homogeneous’’ domain.

Second, it is clear that b decreases as the flow rate (water

velocity) increases. A change in the timescale in an

heterogeneous domain has a strong effect on the non-

Fickian nature of the transport. We address this issue further

in the last paragraph of section 3.5 and in section 6.1.2.

[86] Again, it is important to emphasize that the y(t) is
the intrinsic characterization of the transport. In Figure 3

one can observe that the interplay between the duration of

the experiment and the extent of heterogeneity determines

the effective position of the time dependence of y(t),
e.g., the value of b. At sufficiently long times the y(t)
exhibits a departure from a power law tail, and one can

expect an evolution to normal transport in this time interval

(see section 3.7). Hence the b is a highly useful parameter

determining the transport over an appropriate time duration.

[87] Similar experiments were carried out by Levy and

Berkowitz [2003] for a ‘‘uniformly heterogeneous’’ sand

packing configuration. Contaminant plume behavior visua-

lized by the dye tracer in Figure 10 shows retention of tracer

near the inlet of the flow cell over long times, which will

lead to late time tailing in BTCs. Fits with CTRW solutions

and behavior of the b parameter with increasing flow rates

are similar to those shown in Figure 9. To further illustrate

Figure 9. Measured BTCs with fitted ADE (dashed lines)
and cumulative fB(t) (solid lines) solutions for the
homogeneous sand pack shown in Figure 1. Flow rates
for each experiment were (a) 36, (b) 53, and (c) 74 mL/min.
Values of b are indicated for each fit. Corresponding values
of dispersion D for the ADE fits are 0.037, 0.072, and
0.120 cm2/min (Figures 9a–9c, respectively). Reprinted
from Levy and Berkowitz [2003]. Copyright 2003, with
permission from Elsevier.
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the character of the non-Fickian transport behavior that

arises, Figure 11 shows spatial concentration profiles that

arise for b > 1, generated using the asymptotic form of y(t)
given by (45) (but with a modified form of ~y(u) ’ 1 � t̂m +

cmb, 1 < b < 2). Recall that Figure 4 shows spatial

concentration profiles for similar solutions with b < 1. In

section 3.7 we shall show two-dimensional profiles valid for

a full time range.

[88] We now return to consider the measured BTCs of

Scheidegger [1959] presented in section 1 and subsequent

experiments, which could not be captured by the ADE.

These classical experiments were reexamined by Cortis and

Berkowitz [2004] in the context of CTRW. Scheidegger

[1959] measured BTCs in Berea sandstone cores 30 inches

(76.2 cm) long and 2 inches (5.08 cm) in diameter. The

cores were fully saturated with tracer and subsequently

flushed with clean liquid. The experimental setup ensured a

high degree of control of BCs and measurements. Figure 12

presents the BTC data given by Scheidegger [1959]. Also

shown are best fit curves obtained from solutions of the

CTRW and ADE formulations. Scheidegger [1959] ob-

served that there were systematic deviations between the

computed ADE values and the observed ones: The

calculated values were below the measured ones for small

and large times, whereas they were above the measured

ones for intermediate times. The CTRW solution (using a

variant of the ~y(u) in (44)) captures the full evolution of the

transport behavior. Note, in particular, that both the (non-

Fickian) early and late time portions of the curve are

captured well. In contrast, parameters can be chosen to

Figure 10. Photographs of a randomly heterogeneous,
saturated sand pack with five dye tracer point injections
being transported, under constant flow of 65 mL/min, from
left to right at (a) t = 16 min, (b) t = 49min and (c) t = 115 min
after injection. Reprinted from Levy and Berkowitz [2003].
Copyright 2003, with permission from Elsevier.

Figure 11. Spatial profiles of tracer plumes at b > 2, b =
1.6, and b = 1.2. The solid, dashed, and dotted curves in
each plot represent early, intermediate, and late dimension-
less times, respectively. Reprinted from Levy and Berkowitz
[2003]. Copyright 2003, with permission from Elsevier.
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enable the ADE to fit, at best, only the transport of the

center of mass of the tracer plume.

[89] Cortis and Berkowitz [2004] used a similar analysis

to reexamine three ‘‘typical’’ BTCs from a series of miscible

displacement experiments in both saturated and unsaturated

soils, presented by Nielsen and Biggar [1962]. The samples

were packed in columns 30 cm long. Two BTCs correspond

to experiments using columns filled with Aiken clay loam

0.23–0.50 mm aggregates, in saturated conditions, with

imposed microscopic velocities of 3.40 cm/h and 0.058 cm/

h, respectively. The third BTC corresponds to a partially

saturated (volumetric water content q = 0.27) Oakley sand

with an imposed microscopic velocity equal to 1.03 cm/h.

Similar to Scheidegger [1959], Nielsen and Biggar [1962]

also reported systematic deviations of the calculated values

using the ADE from the experimental data, all of which

display non-Fickian transport behavior. As before, the

CTRW solutions capture the BTC behavior more comple-

tely than those provided by the ADE, as seen in Figure 13.

3.5. Local Fluctuations in Porous Media

[90] We have shown in section 3.4.2 how tracer transport

in even ‘‘homogeneous’’ porous media can be non-Fickian.

We further examine the subtle effects of pore-scale disorder

in the case of a series of uniformly packed arrangements of

small spheres of uniform diameter. Clearly, it is not possible

to realize a periodic arrangement of spheres from a practical

point of view, as some disorder will appear evident at a

length scale, say, of a few sphere diameters. The key issue is

to recognize that short-range ‘‘geometrical’’ heterogeneity

in a porous medium leads also to short-range spatial

variability in the microscopic velocity field v(y) of the

liquid that carries the tracer. The complex nature of the

paths traveled by the tracer in this type of porous medium is

clearly governed by the fluctuations of the Stokes velocity

field v(y) around its volume average value hv(y)i because of
these local heterogeneities in the pore volume.

[91] We consider local averages of the key quantities and

retain a statistical characterization of these fluctuations. We

‘‘coarse grain’’ the porous medium by averaging over a

Vcell; that is, we shift the length scale from the interpore

distance to the Vcell radius r. The spatial autocorrelation of

the local Stokes velocity field can be expressed as

hv yð Þ v yþ sð Þi ¼ hv yð Þ2i exp � s

d

� �
; ð50Þ

where d is the correlation length of the fluctuations and the

average is over Vcell (with d � r). We simplify the problem
Figure 12. Measured BTC with CTRW/ADE fits for a
Berea sandstone core, using a truncated power law function
(61) with b = 1.59. Here the quantity j represents the
normalized, flux-averaged concentration. (top) Complete
BTC. (bottom) Region identified by the bold-framed
rectangle in Figure 12 top plot. Note the difference in scale
units between the plots. Column length equals 0.762 m.
Porosity n = 0.204. Flux q = 1.73 cm3/min [after
Scheidegger, 1959, Figure 2]. Dashed line is the best
ADE model fit. Solid line is the best CTRW fit. After Cortis
and Berkowitz [2004]. Reproduced with permission.

Figure 13. Measured BTC with CTRW/ADE fits for
Aiken clay loam 0.25–0.50 mm aggregates, using a
truncated power law function (61) with b = 1.29. Here the
quantity j represents the normalized, flux-averaged concen-
tration. (top) Complete BTC. (bottom) Region identified by
the bold-framed rectangle in the Figure 13 top plot. Note the
difference in scale units between the plots. Column length
equals 30 cm. Velocity v = 0.058 cm/h [after Nielsen and
Biggar, 1962, Figure 9], dots). Dashed line is the best ADE
model fit. Solid line is the best CTRW fit. After Cortis and
Berkowitz [2004]. Reproduced with permission.
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by considering the autocorrelation in the bias direction only

and hence use scalar notation.

[92] We assume that the local transition rate for the tracer

is due to advection in this Stokes field, as well as diffusion:

w yþ sð Þ ¼ a

8

v yþ sð Þ
�l

þ b

6�t
exp � s

l

� �
; ð51Þ

with l being a characteristic diffusion length, �l = �sp(s) s

being a characteristic pore length, and�t being a characteristic
‘‘relaxation time for diffusion.’’ The constants a and b are

fitted to the experimental data. The transition rate in (51) also

fluctuates and therefore must be characterized statistically.

[93] Cortis et al. [2004a] derive an effective transition

rate, which involves (50) and (51), from a coarse-grained

master equation (ME) for the flux-averaged concentration.

The effective rate is of the form (20) with a velocity-

dependent prefactor

wm / h � a
hv yð Þi
vy

þ b; ð52Þ

where the transport velocity vy ��l/�t, ro ! d, and l � d. The
transitions of the form (20) are taken between randomly

distributed volumes, Vcell, for this case of mild disorder

(valid for h � 1). Thus the y(t) is the same as (21) with t �
(t/�t)h/6 and z ! h; as a result, we denote (21) as the h
function. The result depends on a natural ansatz that the

radius of Vcell is velocity-dependent, as the range of the

transitions depend on v, which we choose as r � 6d/h
[Cortis et al., 2004a].

[94] The BTC measurements were carried out on homo-

geneous sand columns [Cortis et al., 2004a], and surpris-

ingly, we observed distinct effects due to these small-scale

grain-size-level heterogeneities. A series of tracer break-

through experiments was performed in a one-dimensional

flow field on uniformly packed columns of two different

lengths. Each column contained either glass beads or well-

rounded quartz sand in one of three (fine, medium, or

coarse) average grain sizes.

[95] Figure 14 shows a typical BTC for a short column

(L = 20 cm) filled with fine sand. It can be observed that

while the mean arrival time is matched approximatively by

the fitted ADE model, the predicted early and late arrival

times deviate from the data. These deviations are found to be

systematic and of comparable order of magnitude over a set

of 48 such column experiments. Also shown in Figure 14 is a

fit to the data using a BTC computed with the h function

described above. It can be seen that the solution of (33) with

a memory function defined by the h function captures all of

the ‘‘anomalous’’ features (in contrast to the ADE model)

and also better quantifies the position of the mean arrival.

[96] On the other hand, the Fickian evolution of a BTC

for a long column (L = 101 cm) filled with coarse sand was

captured correctly using the ADE model [Cortis et al.,

2004a]. From this analysis we conclude that there is a

transition between the anomalous behavior observed in the

short-column experiments and the Fickian behavior char-

acteristic of the long column (discussed below). The

anomalous behavior in this case is not due to a y(t) with

a power law tail but rather to deviation from a pure

exponential form (recalling that the pure exponential form

gives rise to Gaussian behavior).

[97] Fitting numerical solutions of (33) to these experi-

mental BTCs, we obtained independently the parameters vy,

Dy, and h corresponding to the h function. Also we

obtained the parameters hvi and D for the ADE (i.e., the

solution of (33) for ~M (u) = 1). In Figure 15 we plot the

value of this ‘‘disorder parameter’’ h against the ratio hvi/vy
for the set of 48 BTCs. It can be seen that the prediction of

(52) is clearly satisfied by the experiments. The fitted values

of h range between 0.8 and 1.5. This range of values is

characteristic of a weak disorder.

[98] The approximations made in the determination of h
are consistent with the values needed to fit the data in a

system with small disorder. The robustness of the linear

dependence of h in (52) on the ratio of fluid velocity to

transport velocity, hvi/vy, is an a posteriori justification of

Figure 14. Comparison of measured versus fitted BTCs
for a typical short-column experiment, using the h function
(21) with h = 0.9212. (top) BTC where here the quantity j
represents the normalized, flux-averaged concentration.
Dots indicate measured chloride BTC for a fine sand with
average grain size diameter of dm = 0.231 mm. Measured
porosity n = 0.3228. Column length L = 19.85 cm. Section
area is 4.956 � 10�4 m2. Volumetric fluid flow Q = 6.717 �
10�7 m3/min. Dashed line is the best ADE model fit: hvi =
4.917 � 10�3 m/min and D = 3.2363 � 10�6 m2/min. Solid
line is the best CTRW fit: vy = 4.0389 � 10�3 m/min and
Dy = 1.1601 � 10�6 m2/min. (bottom) Quantity (1 � j) in
logarithmic units to emphasize the long time tail. Reprinted
with permission from Cortis et al. [2004a] (http://
dx.doi.org/10.1103/PhysRevE.70.041108). Copyright 2004
by the American Physical Society.
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the coarse-graining approach and the form of (50) and (51).

Moreover, the value of unity obtained for a can be proved

theoretically at least for smooth porous media. The

importance of these results lies in demonstrating that mild

fluctuations from a completely ‘‘homogeneous’’ porous

medium have clear effects on the basic observations of

transport in these media. Thus the physical picture forming

the basis of the classical ADE leads to an incomplete

description of transport phenomena even in ‘‘homoge-

neous’’ media, whereas a CTRW formulation can quantify

this kind of transport. The nature of the ‘‘non-ADE’’

behavior analyzed here is different from the non-Fickian

behavior discussed in this paper. The effective y (t) we use

here (h � 1) deviates from a pure exponential (/ exp

(�Wt)) in an incremental way, with no power law tail. Yet

as we have discovered, this difference from that required for

the use of an ADE clearly has measurable consequences.

[99] The key issue, to reiterate, is to recognize that short-

range ‘‘geometrical’’ heterogeneity in a porous medium

leads also to short-range spatial variability in the micro-

scopic velocity field v(y) of the liquid that carries the tracer.

These latter effects are eventually ‘‘averaged out’’ in, e.g.,

sufficiently long columns L of granular matter: L { dm,

where dm is a characteristic diameter of the individual

grains. However, in a large range where L � dm these

fluctuations can produce the measurable, systematic devia-

tions from the BTC derived from the ADE. The volumetric

fluxes used in the two tracer experiments were comparable

(Q1 = 6.717 � 10�7 m3/min and Q2 = 7.8760 � 10�7 m3/

min for the short (L = 20 cm) and long (L = 101 cm)

columns, respectively), such that the residence time of the

tracer in the long column (t2 � 265 min) was thus roughly 5

times larger than that for the short column (t1 � 53.7 min).

The ratio of the total length of the column to the diameter of

the characteristic disorder (the diameter of the grains) is

equal to L/dm = 870 for the short-column (fine sand)

experiment, and it is of the same order of magnitude for the

long column (coarse sand) experiment, L/dm = 909.

Experiments on the long column, which showed normal

transport behavior, and on the short column, which showed

anomalous behavior, clearly demonstrate that the relative

residence time is ultimately what governs the transition

from anomalous to Fickian behavior. Considerations only of

the length-scale separation are not sufficient to discriminate

between anomalous and normal transport behavior.

3.6. Fractal Chemistry in Catchment Basins

[100] In a very different type of field study, Kirchner et al.

[2000] measured the chloride tracer concentration cR(t) time

series in the rainfall over a catchment area in Plynlimon,

Wales, and compared it to the time series of the chloride

tracer concentration cs(t) in the catchment Hafren stream.

They relate the concentrations through the convolution

integral

cs tð Þ ¼
Z 1

0

h t0ð ÞcR t � t0ð Þdt0; ð53Þ

where the effective traveltime distribution h(t) governs the

lag time between injection of the tracer through rainfall and

outflow to the stream. Kirchner et al. [2000] performed a

spectral analysis of the time series data and showed that the

chloride concentrations in rainfall have a white noise

spectrum, while in streamflow the spectrum exhibits a

fractal 1/f scaling, f denoting frequency. The dynamics of

the passive tracer transport in the catchment h(t) were

extracted from the spectral analysis to conclude that

h tð Þ � t�m; ð54Þ

where m � 0.5. Remarkably, Kirchner et al. [2000]

established this power law behavior over 3 decades of time

from 0.01 to 10 years; they also refer to similar scaling with

m between 0.4 and 0.65 found in Scandinavian and North

American field sites, which indicates a certain ubiquity to

fractal, scale-free forms. We account for this behavior with

the CTRW framework [Scher et al., 2002b] because the

transport is dominated by subsurface flow of the catchment

basin, which can be modeled as a heterogeneous porous

medium and/or a random fracture network.

[101] The first step to understanding transport in the

catchment is the clarification of the meaning of (53). The

h(t) is the effective response to a pulse of rain falling on

the entire area of the catchment. Every point of this area is a

source of chloride, and the stream is a line sink for the

chloride. We simplify the area to be a rectangle of width 2l
about this stream sink. The sink or absorbing boundary

ensures the correct ‘‘counting rate’’ of chloride at the

arriving point; that is, the first-passage time distribution

F(l, t) given by (11) is the appropriate traveltime distribution

from a pulse source at the origin to the point l. In terms of

this intrinsic distribution,

cs ls; tð Þ ¼
Z 1

0

X
l2W

F ls � l; t0ð ÞcR l; t � t0ð Þdt0; ð55Þ

where cs(ls, t) is the chloride concentration at the

stream position ls at time t, W is the size of the catchment,

and cR(t; l) is the rain input at a position l in W.

Figure 15. Coefficient h versus the dimensionless velocity
hvi/vy for a set of 48 experimental BTCs on short columns
filled with well sorted granular materials of different
grain size. Reprinted with permission from Cortis et al.
[2004a] (http://dx.doi.org/10.1103/PhysRevE.70.041108).
Copyright 2004 by the American Physical Society.
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[102] In the catchment being studied, the magnitude of

the stream velocity is much faster than the groundwater

flow, vs � v. Hence, at a sample position downstream one

has an ‘‘instant’’ integration of all of the tracer that hits the

full length of the stream. Thus it suffices to consider the

total tracer flux into the stream integrated over the directions

perpendicular to the groundwater flow, which defines the

first-passage time distribution at the absorbing boundary.

We can consider the sampling positions {ls} of cs to be a

small region compared to W, and hence cs(ls, t) � cs(t). To

calculate the summation over l, we assume that the rainfall

is distributed uniformly in W, cR(l, t) � cR(t). Hence we

recover (53) now with

h tð Þ �
X
l2W

F l; tð Þ: ð56Þ

The distribution F(l, t) must be integrable in time, and for a

finite W, h(t) is also integrable. The basis of comparison for

various transport approaches is the computation in (56).

[103] We compare two approaches to the determination of

F(l, t) in (56) based on the solution of the ADE and CTRW

equations, respectively. The simple geometry we have

chosen, with periodic BCs on the sides perpendicular to the

stream, allows the grouping of catchment chloride sources

into line sources parallel to the stream. Hence we consider

the one-dimensional form of F(lx, t), with v the flow

component perpendicular to the stream.

[104] The ADE solution is

F lx; tð Þ ¼ lxffiffiffiffiffiffiffiffiffi
4pD

p
t
3
2

exp
� vt � lxð Þ2

4Dt

" #
; ð57Þ

which yields for (56), in one dimension,

h tð Þ=v / 1

2

(
erf zð Þ þ erf

Pe

4z
� z

� �

þ exp �z2
! "

� exp � Pe

4z
� z

� �2
 !" #

=p
1
2z

)

with

z � vt

4l

� �1
2

Pe
1
2;

where here the Peclet number Pe� l/a, the dispersivity a�
D/v, D is the dispersion coefficient, and erf(z) is the error

function.

[105] In Figure 16, h(t)/v is plotted versus t for a range of

Pe and fixed values of v = 100 m/yr and l = 0.5 km. For t �
0.01 year, h(t)/v � t�

1
2 for all Pe; however, in the

observational span of 0.01 � t � 10 years, h(t)/v does not

follow this time dependence and is not in accord with the

experimental data. For a low value of v = 10 m/yr the Pe =

1.0 curve (not shown here) can just accommodate the data;

however, Pe = 1.0 requires an extremely large dispersivity

a = 0.5 km. Even with these limiting values the ADE

solution can only match the m = 0.5 case (recall (54)), while

other catchment basin data quoted above cover a range 0.4�
m � 0.65. (Note that for similar limiting parameters, (57),

which is the ADE solution for the BTC for a pulse source

[e.g., Kreft and Zuber, 1978], can exhibit a t�3/2 tail.)

[106] It is more expedient in the CTRW computation to

work with the L of F(x, t), which can be found in (47)

(based on (44)) with L ! l. The L of (56) is

~h uð Þ /
Z l

0

exp �cblmb=�l
! "

dl ¼ �l0m�b 1� exp �lmb=�l0
! "� �

; ð58Þ

where �l is the mean step distance (�l0 � �l/cb). The expression
for ~h(u) in (58) has been thoroughly studied in another

context [Scher and Montroll, 1975]; the main features are

h tð Þ �
tb�1; t < t*

t�b�1; t > t*

8<: ð59Þ

with t � t/xo�l
0e, where xo is a characteristic value of the x

distribution (see (41)), which we take as xo
�1 = v, and e is a

constant. The exponent for t > t* ensures that h(t) is

integrable. On a log-log plot, h(t) displays two constant

slopes, b � 1 and �1 � b, with a turnover range between

them. The center time of this range t* can be estimated as

the time for the argument of the exponent in (58) to be

�O(1) (using m � 1/t)

t� � 1� b
b

� �1�b
b

bl=�l0
! "1

b: ð60Þ

(The b factors derive from a more detailed analysis [Scher

and Montroll, 1975, Appendix C].)

[107] For b = 1
2
, in (58) one can determine the inverse L

and obtain h(t) � �l0(pt)�
1
2[1 � exp(�l2/4�l02t)] shown in

Figure 17. For v � 100 m/yr, l � 1
2
km,�l0 � 30 m, and e � 1

2

one has (from (60) and t*�l0e/v � t*) that t* � 10 years,

which is a reasonable timescale for the change from h(t) �
tb�1; we use h(t) and h(t) interchangeably. Hence the

scaling result (59) agrees with the Kirchner et al. [2000]

data in (54) over the measurement time range (>3 decades

Figure 16. A log-log plot of h(t)/v versus t in years for v =
100 m/yr and the width of the basin l = 500 m. The curves
correspond to Pe of 0.1 (short dashed), 1.0 (medium
dashed), 10.0 (long dashed), and 100.0 (dashed-dotted);
solid line indicates infinity. The curves for t < 0.01 scale as
h(t)/v � t�1/2; this constant slope changes over the range of
the experiment, 0.1–10 years, even for very low Pe.
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for t � 10 years) with b = 1 � m. The t ‘‘cutoff’’ for h(t) in

(59) is algebraic, t�b�1, not exponential as given by

Kirchner et al. [2000]. This behavior of h(t) is indicative

of extremely long chemical retention times in catchments.

The turnover to the t�b�1 dependence (in (59)) is a

prediction of the CTRW theory and has not yet been

observed.

[108] Another prediction of the CTRW theory, to inde-

pendently test the model (as discussed by Stark and Stieglitz

[2000]), is the response at the stream to a tracer spill at a site

in the catchment. Again, we must calculate the one-

dimensional first-passage time distribution to the stream

but from a fixed site distance lx [Dentz et al., 2004]. In this

calculation we use a modification of the power law tail (45)

for y(t). We truncate the tail at a time t2 because we assume

that at such long chemical retention times the transport

could evolve to normal behavior. The use of this

‘‘truncated’’ power law y(t) is discussed thoroughly in

section 3.7.

[109] Figure 18 shows the calculated arrival time distri-

bution (flux) at the stream for t2 = 100 years and tracers

originating from three different points along the lx axis at

lx = 25, 100, and 250 m. For this scenario the distance

from the absorbing boundary (stream) must be smaller than

80 m in order to observe a pronounced power law behavior.

For lx = 25 m the maximum of the arrival time distribution is

at about t = 0.1 year. Power law behavior is observed for

times large compared to 0.1 year and small compared to the

cutoff time t2 = 100 years. For lx = 100 m the maximum of

the arrival time distribution is shifted to 1 year. One observes

tailing of the arrival time distribution for times between 1

and t2 = 100 years, but a distinct power law tail does not

develop. For lx = 250 m the maximum is located at about

10 years. The arrival time distribution shows a weak

tailing between 10 and 100 years. As expected, the three

curves decrease quickly for times larger than the cutoff

timescale of 100 years.

[110] In these field observations of tracer transport in

catchments, Kirchner et al. [2000] demonstrated power law

behavior over at least 3 decades of time. A CTRW-based

model [Scher et al., 2002b] has accounted for this behavior

over such a large time regime and for a range of values of m.

Observing the tracer flux into the stream for a site injection

at lx � 25 m (to detect the power law tail) would be added

confirmation of the model proposed by Scher et al. [2002b],

as discussed by Stark and Stieglitz [2000].

3.7. Truncated Power Law

[111] In section 2.5 we derived a y(t), (21), that exhibited
a number of the general features of the range of transition

rates in a disordered system (Figure 3). In section 3.5 we

used the large z (quasi-exponential) evaluation of this y(t)
to characterize a nearly homogeneous system. For most of

the other applications in section 3 we used a y(t) with an

asymptotic power tail, (45). The BTC’s computed with the

input of a power law for y(t) in many cases encompass the

full set of measurements. The large ‘‘power law’’ region is

thus a practical one. However, notwithstanding this

accounting for observations, we recognize that (44) has

limits: At large enough time in any real physical system the

transport becomes normal if the scale of observation is

larger than the largest heterogeneity scale. For example, the

lower z curves in Figure 3 exhibit a power law tail

behavior for a range of large values of t, but with

increasing t, there is a departure from this behavior, and

y(t) eventually decays faster than t�3. In other words,

there is a cutoff timescale, and transport in the long time

limit evolves to Fickian (macrodispersion regime). We

stress that the choice of y(t) for any given application must

of course be motivated by the physical nature of the system

under consideration.

[112] A simple version of y(t) that takes account of

this cutoff behavior is a truncated power law distribution,

which enables detailed investigation of the transition

from anomalous to normal transport [Dentz et al., 2004]:

y tð Þ ¼t1 t
�b
2 exp t�1

2

! "
G �b; t�1

2

! "h i�1 exp �t=t2ð Þ
1þ t=t1ð Þ1þb ; ð61Þ

Figure 17. A log-log plot of h(t) versus t, with t � t�le/v.

Figure 18. Arrival time distributions at the absorbing
boundary (lx = 0) for t2 = 100 years and lx = 25 m (dotted
curve), lx = 100 m (dash-dotted curve) and lx = 250 m (solid
curve). Reprinted from Dentz et al. [2004]. Copyright 2004,
with permission from Elsevier.
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where t2 � t2/t1 and G(a, x) is the incomplete Gamma

function [Abramowitz and Stegun, 1970]. The L of (61) is

given by

~y uð Þ ¼ 1þ t2 ut1ð Þb exp t1 uð Þ
� G �b; t�1

2 þ t1 u
! "

=G �b; t�1
2

! "
: ð62Þ

The ~M (u) defined in section 2.6 is determined by the

substitution of (62) into (29), with �t = t1. The time t1
represents the approximate median transition time and sets

the lower limit from which power law behavior begins.

Figure 19 shows the behavior of y(t) for different values of
b and for different truncation times.

[113] It is highly instructive to investigate the complete

transport behavior of a particle for the truncated power

law distribution that is characterized by the exponent b
and by the two timescales t1 and t2. For t1 � t � t2, y(t) /
(t/t1)

�1�b as in (45). In this time regime the transport

behavior is anomalous for 0 < b < 2 [Shlesinger, 1974]. The

presence of a cutoff time t2 ensures that for t > t2 the

transport evolves into a normal one. Hence anomalous

transport in any system resides in the interplay between the

duration of the observation and the extent of disorder, which

is reflected in the range of t up to the cutoff t2.

[114] The exponent b is a very useful means to charac-

terize the latter range. However, we have introduced the

truncated power form in (61) and (62) to emphasize the

important point that all physically meaningful forms of y(t)
must have a large dimensionless t (� t/t1) behavior that

causes the transport to evolve inevitably to a normal one.

The truncated power form allows for a sharp transition t >

t2 to the limit of normal transport, whereas the form in (21)

exhibits a more gradual transition.

3.7.1. Random Walk Simulations
[115] To assess quantitatively use of the CTRW in pde

form (section 2.6) and numerical inversion of Laplace

transforms (section 2.4), we compare the results to

random walk simulations carried out using (61) and a

p(s) with finite moments [Dentz et al., 2004]; see also

Appendix A. It suffices, without loss of generality (because

of the central limit theorem), to choose for p(s) a Gaussian

distribution,

p sð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2psL

p exp � s1 � s1ð Þ2

2 sL

" #Yd
i¼2

1ffiffiffiffiffiffiffiffiffiffiffiffi
2psT

p exp � s2i
2 sT

� �
;

ð63Þ

where sL and sT are the longitudinal and transverse

components of the variance S, respectively, which we

assume to be diagonal. Here we choose sL = sT. Lengths are
measured in units of s1.

Figure 19. Behavior of the truncated power law (61) y(t) function and the corresponding BTCs (the
quantity j represents the normalized, flux-averaged concentration). The behavior of y(t) and the BTCs is
shown for (top) b = 0.75 and (bottom) b = 0.5. The function (61) is plotted for two different values of the
truncation time t2, with t1 = 1 (in an appropriate time unit) (t2 = 102 (crosses) and t2 = 106 (squares)).
The BTCs are calculated for one-dimensional flow over a unit domain, with a free flow BC at the outlet.
After Cortis et al. [2004b].
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[116] The equations of motion for the random walk

simulations are given by

s Nþ1ð Þ ¼ s Nð Þ þ X Nð Þ ð64aÞ

t Nþ1ð Þ ¼ t Nð Þ þ q Nð Þ; ð64bÞ

where (s(N), t(N)) denotes the location of a particle in space

and time after N steps. The spatial and temporal random

increments X(N) and q(N) are distributed according to p(s) and
y(t), i.e., as given in (61) and (63). The simulation results

are shown in Figures 20–26 and are compared to

calculations of the analytic solutions of the CTRW

discussed in sections 3.7.2 and 3.7.3.

3.7.2. Center of Mass Velocity and
Dispersion Coefficients
[117] The center of mass velocity, vi

m(t), and the

dispersion coefficients, Dij
m(t), are derived from the first

Figure 20. Simulated time behavior of the (a) longitudinal
dispersion coefficient and (b) center of mass velocity and
transverse dispersion coefficients for b = 0.25, t2 = 103

(diamonds), 104 (asterisks), 105 (crosses), and 106 (circles).
The horizontal lines are the corresponding macrodispersion
regime values. The solid curves result from the inverse L of
(67) and (68). The dashed curves in Figures 20a and 20b
represent asymptotic approximations [Shlesinger, 1974;
Dentz and Berkowitz, 2003]. Reprinted from Dentz et al.
[2004]. Copyright 2004, with permission from Elsevier.

Figure 21. Simulated time behavior of the longitudinal
dispersion coefficient (labeled a) and the center of mass
velocity and transverse dispersion coefficients for b = 0.75,
t2 = 103 (diamonds), 104 (asterisks), 105 (crosses), and 106

(circles) (labeled b). The horizontal lines are the corre-
sponding macrodispersion regime values. The solid curves
result from the inverse L of (67) and (68). The dashed
curves represent the asymptotic approximations [Shlesinger,
1974; Margolin and Berkowitz, 2002; Dentz and Berkowitz,
2003]. Reprinted from Dentz et al. [2004]. Copyright
2004, with permission from Elsevier.

Figure 22. Simulated time behavior of the longitudinal
dispersion coefficient (labeled a) and the center of mass
velocity and transverse dispersion coefficients for b = 1.5,
t2 = 103 (diamonds), 104 (asterisks), 105 (crosses), and 106

(plus signs) (labeled b). The horizontal lines are the
corresponding macrodispersion regime values. The solid
curves result from the inverse L of (67) and (68). The
dashed curve represents the asymptotic approximation
[Shlesinger, 1974; Margolin and Berkowitz, 2002; Dentz
and Berkowitz, 2003]. Reprinted from Dentz et al. [2004].
Copyright 2004, with permission from Elsevier.
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mi
(1)(t) and second spatial moment mij

(2)(t) of c(s, t). Without

loss of generality we choose the velocity to be aligned with

the one direction of the coordinate system, with v the

magnitude of the velocity. In dimensionless form,

vmi tð Þ ¼ v�1 d

dt
m

1ð Þ
i tð Þ ð65Þ

Dm
ij tð Þ ¼ D�1

ij

1

2

d

dt
m

2ð Þ
ij tð Þ � m

1ð Þ
i tð Þm 1ð Þ

j tð Þ
h i

ð66Þ

for v 6¼ 0 and Dij 6¼ 0, where the notation is the same as used

in section 2.6, before (37), and the superscript m denotes

‘‘macroscopic’’ quantities. Using formula (36) and the

definition of the memory function (29), we derive in

Appendix D of Dentz et al. [2004] the L of the first and

second moments:

L m
1ð Þ
i tð Þ

h i
¼ di1 v u�2 ~M uð Þ ð67Þ

L m
2ð Þ
ii tð Þ

h i
¼ 2Dii u

�2 ~M uð Þ þ di1 2 v2 u�3 ~M uð Þ
� �2

: ð68Þ

The time behavior of the center of mass velocity and the

dispersion coefficients (65) and (66) are calculated by L�1

of (67) and (68) using the explicit expression (62) for the L
of the transition time distribution.

Figure 23. Simulated time behavior (plus signs and
diamonds) of the longitudinal dispersion coefficient
(labeled a) and the center of mass velocity and transverse
dispersion coefficients (labeled b) for b = 2.5 and t2 = 106.
The horizontal lines are the corresponding macrodispersion
regime values. The solid curves result from the inverse L of
(67) and (68) for t2 = 106. Reprinted from Dentz et al.
[2004]. Copyright 2004, with permission from Elsevier.

Figure 24. Resident concentrations c(s, t) at t = 103 for b =
0.25 in two spatial dimensions: (a) t2 = 105, (b) t2 = 103, and
(c) t2 = 102. The solid curves represent the behavior resulting
from the inverse L of (38). Dots represent numerical
simulations using the random walk given in (64a) and
(64b). Reprinted from Dentz et al. [2004]. Copyright 2004,
with permission from Elsevier.

Figure 25. Resident concentrations c(s, t) at t = 103 for b =
0.75 in two spatial dimensions: (a) t2 = 105, (b) t2 = 103, and
(c) t2 = 102). The solid curves represent the behavior
resulting from the inverseL of (38). Dots represent numerical
simulations using the random walk given in (64a) and (64b).
Reprinted from Dentz et al. [2004]. Copyright 2004, with
permission from Elsevier.

Figure 26. Resident concentrations c(s, t) at t = 103 for b =
1.5 in two spatial dimensions: (a) t2 = 105, (b) t2 = 103, and
(c) t2 = 102. The solid curves represent the behavior resulting
from the inverse L of (38). Dots represent numerical
simulations using the random walk given in (64a) and
(64b). Reprinted from Dentz et al. [2004]. Copyright 2004,
with permission from Elsevier.
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[118] The moments (65) and (66) provide valuable infor-

mation about the spatial shape of the solute plume. How-

ever, we stress that they cannot be used directly in a local

time ADE. The timescale on which (66) approaches a

constant is an indicator of when the transport behavior

becomes Gaussian (normal).

[119] The off-diagonal coefficients of the second moment

vanish for symmetry reasons because the ‘‘local’’ dispersion

tensor D is assumed to be diagonal. The Dm(t) is diagonal

and, as can be seen from (67) and (68), the transverse

elements are equal, Dii
m = Djj

m(t), i, j > 1. Thus we employ in

the following the notation D11
m (t) = DL

m(t) and Dii
m(t) = DT

m(t),

i > 1. From (65)–(68) we conclude that the time behavior of

the (dimensionless) transverse dispersion coefficients is

identical to the behavior of the (dimensionless) center of

mass velocity:

Dm
T tð Þ ¼ vm1 tð Þ: ð69Þ

[120] In the limit t ! 1 the transport behavior is Fickian

[Dentz and Berkowitz, 2003]. In this case the solute transport

is characterized completely by the (constant) center of mass

velocity and dispersion coefficients, which are given by

Shlesinger [1974] and Dentz and Berkowitz [2003]

vmi ¼ di1
t1

t̂
; ð70aÞ

Dm
ii ¼

t1

t̂
þ di1

si
2

s2i

t1
bt2 � 2 t̂2
� �

t̂3
; ð70bÞ

Dm
L tð Þ

Dm
T tð Þ ¼ 1þ si

2

s2i

bt2
t̂2
� 2

 !
: ð70cÞ

The mean time t̂ and mean squared times for the truncated

power law distribution (61) are given in Appendix C ofDentz

et al. [2004] and are explicit functions of t2 and b.
[121] The numerical results are presented in two comple-

mentary ways. In section 3.7.3 we exhibit two-dimensional

contour plots of the resident concentration (solute plumes)

at a fixed time and a range of b, t2. Here, to show the full

time evolution of these solute plumes, we plot the center of

mass velocity and dispersion coefficients v1
m(t) (and hence

DT
m(t), see (69)) and DL

m(t), respectively, versus t and a

range of b, t2 in Figures 20–23.

[122] The horizontal lines in Figures 20–23 are given by

(70a) and (70b) and are the limiting values of all the curves.

In Figures 20–23, there is excellent agreement between the

simulations and the results of the numerical L�1 of (67) and

(68) (based on solutions of the pde form of CTRW). Figures

20–23 are a gallery of behavior each with a value of b
representing a distinct range. The t regions of time depen-

dence of v1
m(t) and/or DL

m(t) correspond to anomalous

transport, and the regions where both have constant values

are normal transport. In Figures 20 and 21, 0 < b < 1, and in

the time regime 1 � t � t2 the time dependence can be

estimated by the asymptotic expressions in (46), v1
m / tb�1

(the derivative of �‘(t)) and DL
m(t) / t2b�1 (the derivative of

�s2(t)). This time dependence strictly only holds for the case

(61) for t2 ! 1 i.e., without the influence of a finite t2.
The dashed lines in Figures 20–23 represent these

asymptotic expressions derived from the leading order in

the small u expansion of (67) and (68).

[123] In Figure 20, b = 0.25 and the asymptotic analysis

predicts v1
m / t�3/4 and DL

m / t�1/2, which describes the

time behavior of the observables only qualitatively but

accounts for the monotonic decrease for both in the interval

1� t � t2. The agreement with the asymptotic approxima-

tion improves with increasing t2. For t � t2 they approach

final (macrodispersion regime) constant values given by (70a)

and (70b), respectively, which decrease with increasing t2.
[124] Figure 21 shows calculations for b = 0.75, and the

asymptotic analysis predicts v1
m / t�1/4 and DL

m / t1/2,
which describes the time behavior of the observables only

qualitatively but accounts for the monotonic decrease of

v1
m(t) or DT

m(t) (subdiffusive) and the monotonic increase of

DL
m(t) (superdiffusive) in the interval 1 � t � t2. On the

timescale t2 we observe a crossover to the (macrodispersion

regime) constant value that is reached for t � t2. This
value increases with increasing t2 for DL

m(t) and as in

Figure 20 decreases for DT
m(t). In contrast, for b = 0.25

the transverse as well as the longitudinal spreading

is subdiffusive; here DL
m is superdiffusive and DT

m

is subdiffusive. (Note that for the purely diffusive case

(v = 0) the t dependence of D = s2/t is tb�1, which always

decreases (subdiffusive) for b < 1 and increasing t.)

[125] An important consequence of the behavior shown in

Figures 20 and 21 is the effect of the time duration (and

hence heterogeneity scale) of the anomalous regime on the

final shape of the normal plume. The ratio of longitudinal

dispersion to transverse dispersion (70) is an explicit func-

tion of t2 and b through bt2/̂t2 (see Appendix C of Dentz et

al. [2004]). From Figures 20 and 21 one can discern that the

ratio increases as t2 increases for 1/2 < b < 1 and for 1 < b <
2. In Figure 20 (0 < b < 1/2) one can note a small increase

with t2. While the emphasis in the literature has been on the

macrodispersion, here we have shown the close connection

between the ratio DL
m/DT

m and their relation to observables

(e.g., breakthrough curves) at earlier times.

[126] For 1 < b < 2 the center of mass velocity (v1
m) is

constant (the timescale t2 is not relevant in this case), while

the asymptotic approximation yields DL
m(t) / t2�b. For b =

1.5 in Figure 22, DL
m / t1/2 in the time regime 1 � t � t2,

and the behavior of the observable is well described by the

asymptotic approximation.

[127] For b > 2 both v1
m and dispersion coefficients are

constant to leading order. Figure 23 shows the time behavior

of DL
m, v1

m for b = 2.5 and t2 = 106. The DL
m increases

monotonically. In contrast to the time behavior observed for

0 < b < 2, DL
m approximates its macrodispersion regime

value already in the intermediate time regime 1 � t � t2.
The timescale t2 is not critical for the time evolution of DL

m.

3.7.3. Resident Concentration
[128] To display the qualitative change in the character of

the spatial concentration profiles in the transition from

anomalous to normal transport behavior, we fix the

observation time t in the contour plots of c(s, t), (38),
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in Figures 24 to 26 and vary the cutoff time t2. Also shown

are the results of the random walk simulation with the same

p(s) and y(t); they are seen to be in excellent agreement

with the contour plots.

[129] The solute evolves from a point-like injection at

s = 0 and t = 0. Figures 24–26 are a gallery of profiles for

b = 0.25, 0.75, and 1.5 and in each figure t2 = 105, 103, and

102 at an observation time of t = 103. Figures 24c–26c

indicate normal transport, and the profile approximates the

corresponding (macrodispersion regime) Gaussian solution,

although with varying degrees of ‘‘memory’’ of the system.

In the anomalous limit (Figures 24a–26a), there is an

interesting dependence on b. For b < 1 in Figures 24 and 25

the peak of the profile remains near the point of injection (as

shown in the y = 0 plane projection in Figure 4) with more

localization for b = 0.25. In Figure 26 for b = 1.5 the peak

moved from the origin (at constant center-of-mass velocity,

see Figure 22); however, there is still anomalous behavior

with a long backward tail. This tear drop shape has been

observed in laboratory experiments as shown in Figures 1

and 10, as well as by Weisbrod et al. [2003].

[130] The transition from anomalous to normal transport

(Figures 24b–26b) also depends on b, with a very slow

change for b = 0.25. The shape is reminiscent of the one in

Figure 25a; in Figure 26b for b = 1.5 a decline in the

asymmetry of the shape is evident.

[131] Depending on the typical transport timescales, here

t1 and t2, the transport of a solute can display highly non-

Gaussian features over a large time regime. Even at

extremely large times, where transport is expected to be in

the macrodispersion regime, one observes deviations from

normal transport patterns. Only in the limit t � t2 is

Gaussian behavior approximated. Depending on t2, these

times can be so large that they are not of practical interest

because the solute is so spread out that the spatial

concentration is exceedingly small. Hence, for highly

heterogeneous systems the non-Fickian regime is the entire

area of significance. Figures 20 to 26 exhibit a rich set of

behaviors in this regime.

3.8. Macrodispersion Regime

[132] In those cases where one can observe the macro-

dispersion regime, we discussed in section 3.7 the crucial

dependence of the ratio of DL
m/DT

m on the duration of the

non-Fickian regime, i.e., the explicit dependence on t2. The
value of the macrodispersion itself is obviously DL

m(t2) (see
Figures 20–22). Hence it is to be stressed that knowledge of

the non-Fickian DL
m(t) and a determination of t2 is

sufficient to calculate the macrodispersion.

[133] Recent work of Bijeljic and Blunt [2006] has

demonstrated this relationship convincingly. They obtained

numerically the spatial moments (variance s2) of a particle

transported through flow (average velocity v) and molecular

diffusion (Dm) in a pore-scale model [Bijeljic et al., 2004]

and then computed the dispersion coefficients according to

D = s2/2t. The distribution of times y(t) for the particle to

move through a throat from one pore to another was fit with

(61), with t1 = L/v being the mean traveltime over the

interpore distance L (t2 is considered below). In Figure 27

this distribution is plotted as a function of t (� t/t1, as

above) for a range of Peclet number, Pe (� vL/Dm). All the

curves are fit with one adjustable parameter, b, using the

value b = 1.8. In section 3.7.2 we stated that for t1 � t� t2,

1 < b < 2, DL
m(t) / t2�b (see Figure 22). In this case, 2 �

b = 0.2 and the numerical results in Figure 28 confirm the

prediction DL
m(t) / t0.2. Bijeljic and Blunt [2006] also

determined DT
m(t) to be independent of t in agreement

with Figure 22.

Figure 27. The y(t) pdf of traveling between two
neighboring pores in a dimensionless time t = t/t1, where
t1 is the mean traveltime L/v, plotted for different values of
Pe (denoted by arrows). Also shown (curves) are fits using
(61) with a single adjustable parameter b = 1.8. After
Bijeljic and Blunt [2006].

Figure 28. The premacrodispersion regime behavior of DL

computed from pore-scale modeling as a function of
dimensionless time t for different values of Pe (circles).
The solid segments indicate the predicted scaling using
Figure 27 and CTRW: DL/Dm � Pe t2�b for t2/t1 > t � 1
and 1 < b < 2. After Bijeljic and Blunt [2006].
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[134] In the notation of section 3.7,DL
m(t) is dimensionless,

and we work in terms of dimensionless time t. In the work

of Bijeljic and Blunt [2006], DL (derived from s2/2t) is

made dimensionless by the ratio DL/Dm. Thus in relation to

the current notation we have DL/Dm = vLDL
m(t)/Dm = Pe

DL
m(t). Bijeljic and Blunt [2006] used this relationship to

determine the macrodispersion from DL(t2), as discussed

above, where t2 is obtained by physical principles. For

moderate Pe the largest cutoff interpore transit time is the

time to diffuse between pores, t2 = L2/2Dm, so that t2 = t2/t1 =

(L2/2Dm) (v/L) = Pe/2. For larger Pe this diffusion time is

larger than L/vmin, where vmin is a typically smallest flow

velocity. Bijeljic and Blunt [2006] found that the crossover

between these times occurs when L2/2Dm = L/vmin or Pe =

Pecrit = 2v/vmin � 400, where the distribution of throat radii

was taken as typical of Berea sandstone. Thus the scalingDL/

Dm� Pe t2
0.2/ Pe1.2; for Pe > Pecrit,DL/Dm� Pe because in

this range t2 is independent ofPe. In Figure 29 this prediction
of the scaling ofDL/Dmwith Pe yields an excellent account of

the experimental measurements of the longitudinal disper-

sion coefficient on a variety of porous media. The numerical

data also confirmed DT/Dm � Pe, Pe � 1. The results of

Bijeljic and Blunt [2006] take on additional significance in

relation to the conceptual framework of ADE-based

approaches, which we analyze critically in section 6.

4. NONSTATIONARY DOMAINS

[135] The developments of the preceding sections have

considered an ensemble average over the entire domain of

the geological medium. Clearly, this is suitable only if the

sizes of the significant heterogeneities are much smaller

than the domain size. The ensemble-averaged domain is a

spatially stationary one. If the distribution of heterogeneities

has a large variance, characteristic of most naturally occur-

ring geological formations, large-scale regions of ‘‘faster’’

and ‘‘slower’’ flow and transport are present. Here we

consider quantitative treatment of transport in domains that

contain heterogeneities that are well defined on the large

scale (trends) and unresolved on the small scale (residues)

(recall section 2). In these domains an ensemble average is

inappropriate, and we must consider, a priori, its nonsta-

tionary character. Physical evidence necessitating this ap-

proach to treating nonstationary systems is given by, e.g.,

Eggleston and Rojstaczer [1998], Feehley et al. [2000], and

Labolle and Fogg [2001]. These studies emphasize

definition of facies structures and their distribution.

4.1. Hybrid, Two-Scale Formulation

[136] We consider a nonstationary medium which has

known varying properties at a scale x � ‘ and unresolved

heterogeneities at a scale y < ‘ (recall section 2). A schematic

showing these different scales is given in Figure 30.

[137] Most modeling efforts are founded on discretization

of the domain of interest into ‘‘homogeneous’’ zones with

prescribed hydrogeological properties. The division into

zones can be conditioned on, e.g., known geological infor-

mation and geostatistical analyses and can incorporate

explicit correlations in hydraulic properties. We shall follow

a similar approach but treat transport in each of these

‘‘homogeneous’’ zones with a CTRW formulation as devel-

oped in section 2.6. As a result we can integrate resolved

and unresolved heterogeneities in a single ‘‘hybrid’’ ap-

proach to transport modeling. The term ‘‘hybrid’’ refers to

the joining of numerical treatment of large-scale known

heterogeneities with a probabilistic treatment of small-scale,

unknown residual heterogeneities that play an important

role in shaping the overall nature of the transport.

[138] In this hybrid framework the larger-scale known

heterogeneities are treated deterministically, and the rele-

vant equation for the mass balance of a nonstationary

medium is the classical ME (1) or, more specifically, (27)

[Berkowitz et al., 2002]. The unresolved small-scale

heterogeneities are treated statistically (as stationary sub-

domains or local neighborhoods) by the GME (2). Thus the

Figure 30. Two-scale system under consideration. The
unresolved heterogeneities at the small scale y are treated
stochastically, whereas the resolved heterogeneities at the
large scale x are treated deterministically. After Cortis et al.
[2004b].

Figure 29. Experimental measurements of longitudinal
dispersion coefficient, DL, as a function of Pe on bead
packs, sand packs, and sandstones (circles and dashed
vertical lines) compared to predictions using pore-scale
modeling (solid curve) [Bijeljic et al., 2004] and CTRW
results from Figure 28. For Pe � 1, there are two scaling
regimes: DL/Dm � Pe3�b for Pecrit > Pe � 1 and DL/Dm �
Pe for Pe > Pecrit, with Pecrit � 400 and b = 1.8. After
Bijeljic and Blunt [2006].
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developments of sections 2.2 and 2.6, and specifically of

(33), are relevant here. Clearly, this resolution scale is

somewhat arbitrary, and in practical applications it should

be conditioned on the level of detail available from

hydrogeological, geophysical measurements and considera-

tions as described by, e.g., Eggleston and Rojstaczer [1998],

Weissmann et al. [1999], and Lu et al. [2002].

4.2. Integrating the Small and Large Scales

[139] As detailed by Cortis et al. [2004b], we represent

the evolution of a contaminant in a two-scale system

combining the small-scale GME terms with the large-scale

ME into a single equation, hereinafter referred to as the

Fokker-Planck with memory equation (FPME). The FPME

is a merging of (27) (in Laplace space) and (33). This

merging involves the introduction of a position dependence

of ~y(s, u), denoted ~y(s, u; x); in the decoupled form

p(s; x)~y(u; x) the ~y(u; x) is considered to be a purely local

change in the u dependence and scaling. This formulation

gives rise to a space-dependent memory term ~M (u; x),

specific discharge qy(x) = n(x)vy(x) with a space-dependent

porosity n(x), and dispersion D0
y(x). The FPME is

n xð Þ u~c x; uð Þ � c0 xð Þ½ � ¼ �r � ~M u; xð Þqy xð Þ~c x; uð Þ
n

�r � ~M u; xð ÞD0
y xð Þ~c x; uð Þ

h io
: ð71Þ

(Note that in (71), Dy
0 (x) is a factor for the concentration ~c,

whereas in the classical ADE approach, D0
y(x) is a factor

for r~c.) Developing the second derivative in (71) we can

write

n xð Þ u~c x; uð Þ � c0 xð Þ½ � ¼ � ~M u; xð Þ

� qy xð Þ � r � D0
y xð Þ

h i
� r~c x; uð Þ

n
�r � D0

y xð Þ � r~c x; uð Þ
h i

þ ~c x; uð Þr2D0
y xð Þ

o
: ð72Þ

[140] For the hydrogeological applications considered

herein, it can be shown [Cortis et al., 2004b] that spatial

derivatives of ~M (u; x) are small and are not included in

(72); we shall assume that the term r2Dy
0 (x) can be

neglected, so that (72) simplifies to

n xð Þ u~c x; uð Þ � c0 xð Þ½ � ¼ � ~M u; xð Þ

� qy xð Þ � r � D0
y xð Þ

h i
� r~c x; uð Þ

n
�r � D0

y xð Þ � r~c x; uð Þ
h io

:

ð73Þ

Dropping the term r2Dy
0 is reasonable when the Dy

0 field

can be seen as varying piecewise. Of course, the term

should not be neglected if the dispersion field can be

resolved on intermediate scales smaller than the large

(facies) scale (but larger than the microscopic heterogene-

ities). Clearly, for a macroscopically homogeneous medium,

i.e., with no variations in n, qy, Dy
0 , and M(u) over the scale

x, then (73) reduces to the form (33) but at the scale x.

Recall that M(u) as given by (29) accounts for the small-

scale (y) heterogeneities.

[141] The effects of small-scale heterogeneities are

reflected in the memory term ~M (u; x) which gives rise to

anomalous (non-Fickian) dispersion. The deterministic

large-scale variations of the heterogeneous medium are

reflected by qy(x) and Dy
0 (x). In the Fokker-Planck equation

the effect of the macroscopic heterogeneities are addi-

tionally included in the important ‘‘drift correction’’ term,
r � Dy

0 (x), which modifies qy(x) on the right side of

(73).

4.3. Numerical Simulation

[142] We now illustrate how the above framework can be

applied to treatment of a nonstationary, heterogeneous

system, e.g., actual field sites. Here we demonstrate the

versatility and computational feasibility of the approach.

[143] We consider transport in the two-dimensional do-

main W, depicted in Figure 31. The unit (1 � 1) domain is

subdivided into macroscopically ‘‘homogeneous’’ regions

of three different materials W1, W2, and W3 whose porosity,

permeability, and dispersivity are given in Table 1. For the

purposes of this set of simulations the ay(x) ((31) but with

Dy
0 (x) instead of Dy) is assumed to be known from field

measurements, as are all the spatially dependent parameters

in ~M (u, x).

[144] We impose constant pressure BCs equal to 1 and 0

on the inlet and outlet boundaries, respectively, and a no-

flow condition over the remaining portions of the boundary.

We assume a zero initial resident concentration c0, a

constant concentration at the injection point (0.1,0.1), a free

BC at the outlet boundary, and a no-flux BC on the

remainder of the domain. The approximation of the

interface zone between the different macroscopically

homogeneous regions is obtained by linearizing the spatial

derivative of the dispersivity over a small region about the

interface itself.

[145] The first step in the actual computations is the

solution of the flow field q(x) by means of any classical

solver. For simplicity, we make the approximation q(x) �
qy(x), discussing it further at the end of this section. The

second step is the solution of (73) for all values of the u

variable, using the algorithm of de Hoog et al. [1982]. The

final step is a numerical L�1 of the Laplace transformed

solutions for every point of interest in space.

[146] As discussed at the beginning of section 3, solution

of (73) requires specification of the transition rate probabil-

ity density function y(t). Clearly, for application to specific,

real systems the functional form of y(t) and parameter

values within it must be fit or derived from measurable

properties of the medium, the flow field, and/or the tracer

transport itself. Here we shall consider the truncated power

law form (61); other forms of y(t) are considered by Cortis

et al. [2004b].

[147] Within the context of this y(t) function we employ

two sets (B and S) of b values in the regions W1, W2, and W3

(see Table 2). In set B the b coefficients are larger than 1,

whereas in set S they are smaller than 1. We recall that b < 1

is typical of highly dispersive (non-Fickian) transport, while

1 < b < 2 is associated with moderately dispersive systems;
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b > 2 leads to Fickian transport. For each set B and S of b
coefficients, tracer transport was calculated for the FPME.

For comparison, tracer behavior was also determined from

application of the standard ADE model, i.e., by using (73)

and setting the memory term to unity and the drift correction

term r � Dy(x) to zero. Recall that the definitions of

dispersivity in Table 1 are different with respect to the

FPME and the ADE. More specifically, ay as it is used

in calculations with the FPME is given by (32) (but with

p(s; x) instead of p(s)). In contrast, a as applied to the

classical ADE is the conventional ‘‘dispersivity’’ coefficient.

[148] Figure 32 shows contour plots of the migration of

tracer plumes through the domain shown in Figure 31, as

given by solution of the FPME for the truncated power law

y(t) function (61), with b > 1 (set B, see Table 2), along with
that given by solution of the ADE. Three time frames, for

‘‘early,’’ ‘‘intermediate,’’ and ‘‘late’’ times, are reported for

the sake of comparison. The choice of b > 1 was made so as

to yield timescales for the rate of tracer advance that are of

the same order of magnitude as those obtained from solution

of the ADE. As discussed above, this range of b values is

applicable to systems with moderate dispersivity properties.

Deviation of tracer transport behavior from that given by the

ADE is apparent at all times. More specifically, a retardation

of the tracer at all times is evident, because the exponential

cutoff time t2 is much larger than tmax, the maximum time

spread from first tracer arrival to last arrival for the

considered parameters. Note also that when compared to

the ADE solution in Figure 32b, the isoconcentration

contours in Figure 32a are ‘‘compressed’’ along the

interfaces of maximum dispersivity contrast. This is due to

the effect of the ‘‘drift correction’’ term mentioned at the end

of section 4.2.

[149] We consider in Figure 33 the FPME solutions for

the truncated power law y (t) function, with b < 1 (set S).
Note that relative to Figure 32 the timescales for the overall

rate of tracer advance increase by an order of magnitude

Figure 31. Nonstationary domain used for the computations. The three regions W1, W2, and W3 are
represented in the light, medium, and dark gray, respectively. The overall region spans 1 � 1
dimensionless units. The point source is located at the coordinates (0.1, 0.1). The inlet and outlet regions
are also indicated. After Cortis et al. [2004b].

TABLE 1. Values of the Permeability k, Longitudinal and

Transverse Dispersivity AY
L and AY

T, and Porosity n for the

Three Homogeneous Facies 61, 62, and 63

W1 W2 W3

kx 0.10 0.50 0.40
ky 0.10 0.50 0.40
ay

L 0.05 0.025 0.10
ay

T 0.005 0.0025 0.01
n 0.30 0.35 0.40

TABLE 2. Values of Coefficients for the Transition Probability

Function Y(t) in Equation (61) for the Three Homogeneous

Facies 61, 62, and 63 for Cases BBBB and SSS

61 62 63

Case B (b > 1)
t1 0.10 0.15 0.20
t2 1 � 106 5 � 106 10 � 106

b 1.25 1.35 1.45

Case S (b < 1)
t1 0.10 0.15 0.20
t2 1 � 106 5 � 106 10 � 106

b 0.60 0.70 0.80
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(and thus the contours for the ADE solution are totally

different; see Figure 32b). In fact, although the actual

contour patterns are totally different, the early time plot

shown in Figure 33 corresponds to the late time plot shown

in Figure 32. This dramatic effect is due to the highly

anomalous dispersion characteristics of media with values of

b < 1. This a key point of our numerical results using the

hybrid method. Even if just one region in a field (with large

heterogeneity) has b < 1, the differences with the conven-

tional numerical results are significant (in the timescale and

the contour configurations); that is, the residues impact the

large-scale transport [Eggleston and Rojstaczer, 1998].

[150] Considering Figure 32a and the corresponding BTC

obtained by integrating the tracer concentration flux over

the outlet boundary (not shown here) [see Cortis et al.,

2004b], the time for the relative concentration to reach unity

is of the order of 102, while the value of t2 is of the order of

106. Here the tracer reacts strongly to heterogeneities in the

domain, relative to the overall transport length scale. In

other words, when the truncation time is much larger than

the overall transport time, transport remains highly non-

Fickian, and the domain is not ‘‘homogenized.’’ A detailed

analysis of the effects of t2, relative to the overall transport

time, is given by Dentz et al. [2004] (see section 3.7). In

contrast, for the simulation based on b < 1 (Figure 33), the

cutoff time t2 is roughly of the same order of magnitude as

the overall breakthrough time. In such cases, transport

evolves from non-Fickian to Fickian, as the domain

becomes ‘‘homogenized’’ relative to the migrating tracer.

[151] For application of this approach to actual field

situations a few comments are in order. Estimates of the

parameters in the y(t) function, as well as of ay, can be

obtained by fitting the CTRW solution to representative

BTCs measured in each of the different facies, similar to

estimates of the familiar (but incorrect!) dispersivity of the

ADE. In addition, we recall that, in general, vy as it appears

in (33) is not equal to the fluid velocity v. At least, in

principle, vy = �s/�t can be estimated by determining the

characteristic time of travel �t across �s, where �s is the mean

of s [e.g., Bijeljic and Blunt, 2006]. In practice, this tracer

velocity can be estimated directly from measured tracer

BTCs, simultaneously with the estimates of the aforemen-

Figure 32. Contour plots of tracer concentration for plume migration through the heterogeneous
domain shown in Figure 31. Shown here are solutions of (a) FPME with the truncated power law y(t)
given by (61), with set B parameters (Table 2), and (b) ADE. After Cortis et al. [2004b].

Figure 33. Contour plots of tracer concentration for plume migration through the heterogeneous
domain shown in Figure 31. Shown here are solutions of FPME with the truncated power law y(t) given
by (61), with set S parameters (Table 2). After Cortis et al. [2004b].

RG2003 Berkowitz et al.: MODELING NON-FICKIAN TRANSPORT

29 of 49

RG2003



tioned parameters. Of course, one generally calculates only

the Darcy velocity field on the basis of an estimated

hydraulic conductivity field. One possibility is therefore to

modify the estimated velocities in proportion to estimated

ratios between v and vy. On the other hand, the uncertainty

in estimates of the fluid velocity field v due to uncertainties

in estimates of the hydraulic conductivity field make the

approximation vy � v both convenient and reasonable. The

full expression of the tracer velocity is given by (28), i.e.,

including the factor of the memory function ~M (u), and

hence is different from v. As a side consideration we note

that tracer tests intended to estimate the hydraulic

conductivity between two wells, in fact, provide an estimate

only of the tracer velocity rather than the actual hydraulic

conductivity between the wells.

5. CRITIQUE OF THE CTRW APPROACH

[152] The applicability of the CTRWapproach to a range of

experiments was shown in section 3, and the numerical

simulations of transport in nonstationary domains (section 4)

demonstrate further applicability of CTRW to field situations.

[153] These features indicate that the interactions between

the transporting particle and the medium can be mapped

effectively onto an appropriate choice of y(s, t). Further-
more, a few characteristics of the y(s, t) are very often

sufficient to capture completely the particle dynamics. This

description begs the immediate question of how one obtains

y(s, t). A considerable effort may be required, but one can

proceed in a hierarchy of levels of approximation. Here we

suggest five possible approaches: (1) Fit the measurements

with a simple form of y(s, t), e.g., (45), and use b as a fitting
parameter. (2) Develop a ‘‘library’’ of y(s, t) for different
types of geological formations and flowconditions. (3)Obtain

the velocity histogram for a RFN [Scher et al., 2002a], a

porous medium [Bijeljic and Blunt, 2006], or permeability

field [Di Donato et al., 2003] and model y(s, t) in the manner

of (40). (4) Perform a numerical simulation on part of a

complex system, e.g., an array of intersecting fracture

platelets, and determine y(s, t) in terms of variables such as

platelet size and aperture and then use a pdf of these variables

to develop y(s, t) for the entire system. (5) Determine the

w(s, s0) and calculate the ensemble average as in (18). Also, in

the case of a multiple trapping scenario, which is discussed in

detail in section 7.1, constraints on y(s, t) can be obtained by
using its specific connection to mass transfer.

[154] Explicit and analytical linking or conditioning of

y(s, t) to known physical information, such as the hetero-

geneity of the hydraulic conductivity field, is certainly a key

area to develop. A step in this direction is given by Dentz

and Berkowitz [2005], who demonstrate a y(s, t) that is

based explicitly on the underlying heterogeneity distribu-

tion, for the case of transport under spatially random

adsorption. On the other hand, it should be recognized

that there naturally are limitations to full determination of

y(s, t), or for that matter any such effective transport

description, from purely theoretical considerations. How-

ever, to reiterate, on a practical level such full determination

of y(s, t) is not crucial. The remarkable feature documented

in this paper is that a very few parameters capturing the

important features of y(s, t) are sufficient to account quan-

titatively for a host of observations. Even the well-known

determination of the macrodispersion coefficient given by

Gelhar and Axness [1983], as used in the ADE (see

section 6.2.1), is predicated on the assumption of Fickian

transport but also on ignoring completely the dependence

of this parameter on the cutoff (transition) time between

non-Fickian and Fickian transport (recall section 3.7.3).

Moreover, a priori prediction of this transition is not

trivial, being dependent on, e.g., the velocity distribution,

the particle residence time, the heterogeneity scale of the

hydraulic conductivity, and the boundary conditions. Thus

full specification of a transport equation and parameter

values must ultimately rest on site-specific measurements.

As noted in the preceding paragraph, several approaches

can be taken to obtain this information. In particular,

because the underlying permeability distribution of a

domain gives rise to the velocity distribution, which thus

includes naturally all correlations affecting transport, the

velocity distribution can be used to define the actual particle

distributions.

[155] Treatment of many sorption and other multiple

trapping pictures is straightforward, as discussed in

section 7.1 and shown by, e.g., Margolin et al. [2003].

Further extension of the CTRW formulation, i.e., specifica-

tion of either a y(s, t) and/or modifications to, e.g., the

transport equation (33), to account explicitly for biogeo-

chemical reactions such as precipitation/dissolution or other,

often nonlinear (feedback), reactions is another area for

future research. One important step of this CTRW extension

is taken at the end of section 7.1, where an interaction

between a dispersive medium and a spectrum of mass

transfers into immobile states is developed.

[156] Another important area for further development

focuses on methods of solving the transport equation. While

the mathematics are somewhat more extended than those

involved with the familiar ADE, CTRW solutions are

accessible, and the pde formulation (section 2.6) enables

adaptation of many existing solution techniques. This re-

view has focused on the methodology of Laplace trans-

forms, but one can work directly in the time domain, if

desired, using (35).

[157] Because CTRW results from an ensemble average,

the concentration distribution in CTRW is also an ensemble-

averaged quantity, which we usually assume to be sufficient

for a system size large compared to the scale of heteroge-

neity. The variation in the concentration, at a specific

location, among different realizations of the underlying

random fields is thus not quantified explicitly; that is, the

average concentration is an ensemble average. In other

words, if the system size L is much greater than the scale

of heterogeneity l, then the rearrangement of the hetero-

geneity disorder from one realization to the next will result

in a small change in a given neighborhood. Hence the

variation from the ensemble-averaged C(s, t) is expected to

be small. Furthermore, the dynamics of c(s, t) are governed
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by y(s, t), which is a pdf based on the flow field (and thus

heterogeneity distribution) of the entire system; this feature

enhances the sampling of each locale to the heterogeneity

distribution of the whole system. In contrast, if L l, then the

variations in realization-to-realization configurations can

lead to large heterogeneity differences in a given locale and

therefore large variations in concentration. For systems with

L l it is best to use the hybrid approach; the ensemble

average is then used for the small-scale residual hetero-

geneities. Thus the issue of variations is closely tied to the

comparison between L and l. On a physical basis the

ensemble average is best utilized when L > l.

[158] On a formal basis, ‘‘predictive uncertainty’’ in the

CTRW can be considered on two levels. The first level

involves the GME (2), which is an equation for the

ensemble-averaged C(s, t). In principle, an equation for

the variance of this function can also be developed from the

master equation itself. The second level is a practical one:

How sensitive are the results to variations in the parameters

that one inputs into y(s, t)? In any application with a model

y(s, t) one can easily use Monte Carlo simulations to com-

pute the effects of these variations on final predictions and

hence assess the ‘‘predictive uncertainty.’’ It remains to

examine these issues in detail.

6. ADVECTION-DISPERSION EQUATION AND
UPSCALING

[159] In section 1 we discussed the intensive efforts to

model transport in porous media over the last decades.

Many of these efforts are basically tied to the ADE. In

sections 6.1 and 6.2 we discuss in detail the ramifications of

the ADE approach and related modeling frameworks. We

then contrast them to the CTRW framework with a partic-

ular emphasis on the different methods of averaging of the

disorder-induced fluctuations of transport quantities.

[160] The ADE is used extensively in all the natural

sciences; for example, in semiconductor physics it describes

the flow of electrons due to an applied voltage and allows

for diffusive motion driven by spatial variations of the

electron density. In liquid transport the ADE is used, e.g.,

to calculate Taylor dispersion (molecular diffusion of par-

ticles in a flowing fluid in a pipe). The ADE is

@c s; tð Þ
@t

¼ �v � rc s; tð Þ þ D : rrc s; tð Þ; ð74Þ

which is the same as (27) for constant fluid velocity v and

dispersion D. Hence one derivation of the ADE applied to

porous media can be based on the kinetics described by the

master equation (1) with a Taylor expansion of C(s, t), (23),

and w(s, s0) [Berkowitz et al., 2002].

[161] The classical derivation of the ADE for porous

media [e.g., Bear, 1972] is based on the assumption of

the existence of a representative elementary volume (REV),

i.e., on the assumption that at some scale x � y the

variations of the porous medium at the x scale can be

considered homogeneous. The other required assumptions

are that (1) the porous medium is fully saturated; (2)

Darcy’s law applies; (3) transport of a tracer can be split a

priori into an advective part and a mechanical dispersion

part; (4) mechanical dispersion obeys Fick’s law, where the

coefficient D is assumed to be composed of a molecular

diffusion part, Dm, and a velocity-dependent part, which in

one-dimensional form is written D = Dm + va, with a the

so-called dispersivity usually assumed to be a characteristic

length of the pores inside the REV; (5) the transport velocity

equals the fluid velocity; and (6) the spatial variation of the

fluid velocity inside the REV can be neglected.

[162] The historical motivation for the REV stems from

the need to use a continuous mechanistic approach for

porous media, i.e., media which are inherently discontinu-

ous at the scale of the pores. For some quantities this is a

very useful notion, as in defining geometrical properties like

porosity, specific surface, and permeability as an average

over the REV. These quantities can in some sense be

considered ‘‘local quantities.’’ Averaging over the REV to

define other quantities such as dispersivity is more limited

and is a point of departure from the CTRW approach, as we

discuss in section 6.1.

[163] It must be recognized that use of the ADE, at a

variety of different scales, is a key aspect of the vast

majority of transport theories. The dispersivity a then takes

on the role of a ‘‘scaling’’ parameter in the sense that

varying its magnitude is the basis for fitting ADE solutions

to BTC measurements ranging over several orders of

magnitude. A major drawback of the approach is that, in

contrast to the fundamental assumption that a is an intrinsic

porous medium constant, ‘‘force fitting’’ the ADE to mea-

surements over scales from the small laboratory column to

the large field scale demonstrates an ad hoc ‘‘space depen-

dence’’ or ‘‘time dependence’’ of a [e.g., Lallemand-Barres

and Peaudecerf, 1978; Gelhar et al., 1992].

[164] A number of approaches have been made to connect

the different scales and not just use (74) with D or a as a

fitting parameter. All of these approaches start from the

assumption that the ADE equation holds at some micro-

scopic scale and then assume further that some kind of

macrodispersion parameter can be found starting from the

information contained at a microscopic scale. In many

approaches it is also assumed that the ADE form holds at

each scale with upscaled coefficients. The two main

approaches, which to some degree overlap, we denote for

brevity as ‘‘averaging’’ and ‘‘stochastic’’ methods; we

discuss them in detail in sections 6.1 and 6.2.

6.1. Volume Averaging

6.1.1. Methods
[165] The aim of averaging is to start with the ADE at the

microscopic scale and move to a larger scale to obtain an

ADE with modified coefficients. The challenge is to ac-

count for the deviation from the mean, due to the micro-

scopic fluctuations, of the velocity and dispersion. We will

highlight a few of these different approaches.

[166] In ‘‘volume averaging,’’ moving up from one scale

to another in a porous medium necessitates the use of some
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kind of average operator on the microscopic fields at the

scale Ly to obtain fields which are significant at the

macroscopic scale Lx. This average operator acts on some

volume of the porous medium and assigns a macroscopic

value to it. Therefore, unlike the microscopic fields, the

macroscopic fields are smeared over space.

[167] The question then arises: What is the ‘‘correct’’ size

of the averaging volume? The usual answer is to define a

REV as the smallest volume of integration for which there

are no fluctuations in the averages of one or more of the

characteristic features of the porous medium; for example,

Bear [1972] defines the REV in terms of porosity. The size

of the REV, Lx, must be intermediate between a character-

istic microscopic length and a characteristic macroscopic

length scale of the sample, LR, i.e., Ly � Lx � LR.

Sometimes these length scales depend not only on the

microstructure of the porous medium but also on the

physical process under study. It is also possible that porous

media with clear separations of the geometric scales do not

have a REV for a particular physical process. We argue that

this is the case for the dispersion problem in porous media.

Moreover, Berkowitz and Bachmat [1987] showed that a

REV-like dispersion tensor is necessarily scale (REV size)

dependent when deviations of the macroscopic velocity are

taken into account.

[168] A general definition of the volume average operator,

indicated by angle brackets, can be made in terms of

convolution products of spatial distribution functions

[Cushman, 1984; Quintard and Whitaker, 1994]. An

important result relating the gradient of some quantity j
at the microscales and macroscales is represented by a

theorem that states that the average of the gradient of j,
hrji, at the microscopic scale y equals the gradient at the

macroscopic scale x of the averaged physical quantity rhji
plus a fluid-solid surface average contribution.

[169] A modified accounting for the role of deviations

from average values, which arise from the same upscaling

framework, is to use the ‘‘volume averaging with closure’’

method. Here the term ‘‘closure’’ refers to a particular

integrodifferential problem, which determines definition of

the deviations of the quantities of interest from their mean

value using a pde. This method thus attempts to assign

coefficients that prescribe the functional dependence of

deviations from average quantities on the basis of a phys-

ically meaningful microscopic process. A detailed account

of the approach is given by Whitaker [1999]. The basic

requirements of this method are (1) separation of the

microscopic and macroscopic length scales (see discussion

below); (2) periodicity on the boundaries of the REV; (3) a

phenomenological (postulated) relationship between the

deviations of the quantities of interest from the average

value and the gradient of the average quantity itself; (4) a

coefficient of proportionality in requirement 3 that usually

satisfies an integrodifferential problem that is similar to, or

can be mapped onto, the original microscopic equations;

and (5) a starting microscale equation that is invariably an

ADE.

[170] A typical definition of the macrodispersion coeffi-

cient (for constant porosity n and dropping the bold notation

for vectors) is given by

@hci
@t

þ hvi @hci
@s

� @

@s
D @hci

@s

� �
¼ 0 ð75aÞ

D ¼ Dm þ Dm

1

V f

Z
Afs

bf � bs
! "

nfsdA� h v� hvið Þbi; ð75bÞ

c� hcið Þ ¼ b
@hci
@s

; ð75cÞ

where the vector b is given by the problem

v
@b

@s
� @

@s
Dm

@b

@s

� �
¼ � v� hvið Þ ð76aÞ

@b

@s
¼ �I on Afs ð76bÞ

b ¼ 0; for t ¼ 0 ð76cÞ

b sþ Jð Þ ¼ b sð Þ; ð76dÞ

where (76d) is periodicity, I is the identity tensor, Afs

denotes the fluid-solid surface, Vf is the fluid volume, nfs is

the normal vector to the fluid-solid surface, and the

subscripts f and s denote fluid and solid phases, respectively.

Thus the uncertainty in the fluctuations from the mean is

mapped onto the quantity b, which, in turn, solves a

microscopic ADE problem. The requirement of periodicity

at the scale of the REV is key to this method. Bhattacharya

and Gupta [1990] proved that to derive the ADE (in a

central limit theorem framework, for instance), the require-

ment of periodicity (or quasiperiodicity) on the fluid

velocity v is needed.

[171] ‘‘Homogenization theory’’ [see, e.g., Rubinstein

and Mauri, 1983; Bourgeat et al., 1988] and the

‘‘renormalization group’’ are upscaling techniques that have

been used in the context of volume averaging. These

approaches require an underlying REV at some scale for

which a significant average concentration can be defined

locally. Locality is enforced by the specification of periodic

BCs on the relevant quantities over the local cell (REV). In

these theories an important parameter for the upscaling of

the equations is � = Ly/Lx, where Lx is the length scale of the

macroscopic variations and Ly is the length scale corre-

sponding to the local variations.

[172] The homogenization method establishes a hierarchy

of equations based on an expansion of the original transport

problem in e. A closure hypothesis is needed to truncate the

hierarchy; the usual one chosen is a Fickian one and is

analogous to (75c) [see, e.g., Bourgeat et al., 1988].

Rigorous derivation of a stochastic homogenization method

that does not require periodic BCs is given by Auriault and

Adler [1995] and Lunati et al. [2002].
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[173] ‘‘Renormalization group’’ techniques have been

used in the context of subsurface hydrology to determine

macrodispersion coefficients for solute transport in random

flow fields [e.g., Koch and Shaqfeh, 1992; Zhang, 1995;

Jaekel and Vereecken, 1997]. Starting from an ADE with

random advection, the macrodispersion coefficients are

expanded into a perturbation series in the fluctuations of the

random flow field. The renormalization group represents in

this context a tool to systematically sum up certain

contributions of the perturbation series (and in its simplest

application a so-called one-loop renormalization is used).

The resulting macrodispersion coefficients are beyond

second-order perturbation theory in the random field

fluctuations, similar to the results obtained from the

application of ‘‘Corrsin’s conjecture’’ [e.g., Dagan, 1994b;

Zhang, 1995]. The latter, however, has been shown to be

inconsistent in two dimensions [Dagan, 1994b; Dentz et al.,

2003; Attinger et al., 2004].

6.1.2. Length-Scale and Timescale Separation:
A Critical Discussion of the ADE and Averaging
[174] At the start of section 6 we noted basic assumptions

required for applicability of the ADE. The assumptions that

a porous medium can be considered homogeneous at the

relevant scale of measurement and that transport mecha-

nisms can be separated a priori into components of advec-

tion and hydrodynamic dispersion are highly restrictive.

However, as discussed in section 1, illustrated in the

‘‘homogeneous’’ medium shown in Figure 1, and shown

consistently throughout the examples in section 3, the key

underlying assumption that small fluctuations can be

neglected is clearly inadequate. Thus ADE-type descrip-

tions of tracer transport and use of, e.g., REV approaches

are rarely fully correct even on local scales of several

centimeters.

[175] At best, ADE-type descriptions usually capture only

the average properties of tracer migration. Only when

the transport length is orders of magnitude larger than the

heterogeneity scale does homogenization occur, with the

result that Fickian transport is indeed present in the system.

For real domains with a finite hierarchy of heterogeneity

scales, but also finite (and usually limited) domain lengths,

i.e., for the vast majority of field-scale transport problems of

interest, a REV-like homogenization limit does not exist. To

make matters more complex, determination of the ‘‘cutoff’’

at which Fickian transport descriptions are correct is far

from rigorous. As shown in the examples in section 3.7.3,

Figures 24–26, tracer plumes can retain a non-Fickian

behavior long after the transport time/length scale is Fickian

because of memory effects on the evolution of the tracer

plume up to the cutoff.

[176] Let us consider these issues further, recognizing that

an efficient and meaningful upscaling to large spatial and

temporal scales is required of any practical transport theory.

As shown by Levy and Berkowitz [2003] (e.g., Figure 9),

analysis of solute transport in ‘‘macroscopically homo-

geneous’’ media indicates that flow and transport do not

‘‘homogenize’’ on the same temporal and spatial scales. The

fundamental importance of time and length scales relative to

the scales of heterogeneity and domain size were also

examined in the context of the two column experiments in

section 3.5. The transition from non-Fickian to Fickian

behavior as the column length increased showed that the

difference in residence time was the determining factor. In

other words, the validity of Darcy’s law on certain spatial

scales does not automatically imply that transport of a

passive solute can be described by the standard Fickian

theory.

[177] A consequence of this fact is that the effects of

transport processes cannot simply be separated into ‘‘inde-

pendent’’ mechanisms. Recall, for example, the discussion

in section 3.4.2 and Figure 11. Because the timescale

changes as the overall flow rate changes, the transport

parameters (e.g., b or equivalent parameters for other forms

of y(t) in the CTRW framework) are not ‘‘intrinsic’’ and

constant (see Figure 3). This result is in stark contrast to the

specification of precisely these assumptions for, e.g., the

dispersivity a in the ADE. This behavior accounts also for

the intertwining of the two dispersion mechanisms in the

CTRW-based FPME formulation (71) in contrast to the

usual ADE or stochastic approaches (see section 6.2), which

attribute the spreading of the BTC only to the second spatial

moment of the tracer distribution. The memory function

(29) is indicative of a nonlocal-in-time dispersion, whereas

the Dy parameter (31), required to fit the entire BTC,

provides a measure of the local-in-space dispersion.

[178] Traditional transport theories have focused on spa-

tial heterogeneity. A key feature of the CTRW approach, on

the other hand, is the emphasis on temporal aspects of

particle transport, induced by spatial heterogeneity. Shifting

the focus to work within the CTRW framework therefore

represents a change in paradigm.

[179] As discussed in section 6.1.1, some of the averaging

techniques require that the porous medium be periodic (i.e.,

the hypothesis of periodicity is a crucial one in the argument

of Brenner [1980], together with the hypothesis of

ergodicity). While assuming periodicity is a convenient

idealization for small-scale fluid flow applications [see, e.g.,

Dorfman and Brenner, 2002, and references therein],

specification of natural geological structures as periodic is

not an appropriate starting point for modeling contaminant

migration. Another consequence of the periodicity require-

ment should also be recognized: Brenner [1980] showed

that for periodic porous media the ‘‘fluid velocity’’ v is

necessarily identical to the ‘‘transport velocity’’ vy and

traced the difference between the two velocities only to

some particle-size dependent exclusion effect. While this is

certainly an important factor, for instance, in colloidal

transport (where dispersion generally plays a minor role),

other mechanisms are present as well.

[180] CTRW theory, on the other hand, is not limited by

the assumption of periodicity (nor of ergodicity). Periodicity

is, in fact, strictly forbidden at a local scale, because the

structure of the master equation (1) requires, in general, an

accounting of all jumps in the domain. Relaxing these

assumptions in a CTRW framework leads to the correct

physical picture that the fluid velocity v is, in general,
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different from the tracer transport velocity vy. In the CTRW

picture the relative weights of each jump, and therefore the

possibility for a tracer to explore different positions in

space, are governed by the transition times w�1.

6.2. Stochastic Approach

[181] Rather than give a comprehensive review, in this

section we highlight two important aspects of the stochastic

approach to subsurface hydrology that are of relevance in the

present context: (1) non-Fickian transport and (2) effective

transport descriptions and their relation to CTRW. We em-

phasize that the term ‘‘stochastic approach’’ is a general one

and can, in principle, include a wide variety of formulations

(including CTRW) and solution methods. However, we shall

use the term as it has been identified in recent years, namely,

with the particular framework outlined below.

[182] The stochastic approach has been considered exten-

sively in subsurface hydrology and applied to a wide variety

of transport situations ranging from passive and reactive

solute transport to the study of seawater intrusion in

spatially heterogeneous environments. For thorough over-

views of stochastic modeling in hydrology we refer the

interested reader to the textbooks by, e.g., Dagan [1989],

Gelhar [1993], Dagan and Neuman [1997], Zhang [2002],

andRubin [2003]. Critical reckoning of the current position of

stochastic modeling in subsurface hydrology can be found in

a series of papers [Christakos, 2004; Dagan, 2004; Freeze,

2004; Ginn, 2004;Molz, 2004; Neuman, 2004; Rubin, 2004;

Sudicky, 2004; Winter, 2004; Zhang and Zhang, 2004].

[183] In a stochastic approach, spatially and temporally

fluctuating system parameters such as hydraulic conductiv-

ity, porosity, and chemical properties of the medium, for

example, are modeled as random fields characterized by

specific, experimentally accessible statistical properties. The

effective transport behavior of a solute can then be obtained

by ensemble averaging of the observables of interest over

all realizations of the respective random fields.

6.2.1. Transport Coefficients and
Non-Fickian Behavior
[184] The influence of medium heterogeneities on large-

scale transport can be quantified in terms of effective

transport coefficients such as the effective center of

mass velocity and effective dispersion coefficients, which

are derived from the first and second moments of the

normalized concentration c(s, t), respectively. The transport

equations for c(s, t) are discussed in section 6.2.2.

[185] In the stochastic approach, large-scale transport

coefficients are defined as averages over all possible real-

izations of the respective random fields. We focus here on

‘‘ensemble dispersion’’ coefficients Dij
ens(t) [e.g., Kraichnan,

1959; Roberts, 1961; Gelhar and Axness, 1983; Neuman et

al., 1987; Dagan, 1984, 1988], which are derived from the

ensemble-averaged concentration distribution, c(s, t):

Dens
ij tð Þ ¼ 1

2

d

dt

Z
si sj c s; tð Þ dds

�
�
Z

si c s; tð Þ dds
Z

sj c s; tð Þ dds
�
: ð77Þ

Note that the Dij
ens(t) characterize the spreading of the

average solute distribution and not necessarily solute

spreading in a typical heterogeneity realization, as opposed

to ‘‘effective’’ dispersion coefficients [e.g., Batchelor, 1949;

Kitanidis, 1988; Dagan, 1990, 1991; Rajaram and Gelhar,

1993; Zhang and Zhang, 1996; Attinger et al., 1999; Dentz

et al., 2000]. The Dij
ens(t) is independent of time if, e.g., the

concentration distribution is Gaussian. We focus on Dij
ens(t)

because it is related to the dispersive flux in an effective

upscaled transport equation for the average solute concen-

tration, as outlined in section 6.2.2.

[186] A principal result of the stochastic approach is that

of Gelhar and Axness [1983], who expressed the hetero-

geneity-induced solute spreading by means of a longitudinal

macrodispersion coefficient DL
mac related to the variance sff

2

and correlation length l (see (81)) of the log-hydraulic

conductivity field f(s) and the mean, ensemble-averaged,

groundwater flow velocity [[v]],

Dmac
L � lim

t!1
Dens

11 tð Þ / s2ff l v½ �½ �: ð78Þ

Frequently, large-scale transport is modeled by advective-

dispersive transport with local-scale dispersion substituted

by the (constant) macrodispersion coefficients. The assump-

tions underlying this approach are that (1) large-scale

transport obeys the same dynamic equation as transport on a

local scale and (2) (constant) local-scale transport coeffi-

cients can simply be substituted by their (constant) large-

scale counterparts given as suitably defined ensemble

averages.

[187] However, the Dij
ens(t) are, in general, functions of

time or transport distance, as discussed, e.g., in section 6.1

[e.g., Koch and Brady, 1987, 1988; Dagan, 1988; Neuman

and Zhang, 1990; Koch and Shaqfeh, 1992], i.e.,

Dens
ij ¼ Dens

ij tð Þ; ð79Þ

which implies that large-scale solute dispersion is, in

general, non-Fickian. If Dij
ens(t) does not reach a constant

value at large times but increases as a power of time,

Dens
ij tð Þ / tk ð80Þ

for 0 < @ < 1, as derived throughout sections 2–4, one has

anomalous transport [e.g., Bouchaud and Georges, 1990].

Here we review briefly aspects of non-Fickian dispersion as

a consequence of the correlation structure of the log-

hydraulic conductivity. We note for comparison, recalling,

e.g., section 3.1, the CTRW theory also relates the statistical

properties of the hydraulic conductivity, through determina-

tion of the statistical distribution of 1/v, directly to the y(t)
and the memory function M(t). A related treatment based on

analysis of transport in streamlines is given by Di Donato et

al. [2003].

[188] A criterion for Dij
ens(t) to reach a normal dispersive

limit (i.e., a constant long time value) is the existence of a

correlation length l of the autocorrelation function of the
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log-hydraulic conductivity [Koch and Brady, 1988], which

is defined as [Dagan, 1987]

l � Cff 0ð Þ
� ��1

Z1
0

Cff rð Þ dr ð81Þ

with r = jsj. Ensemble dispersion in the flow direction, i.e.,

D11
ens(t), has been investigated in the literature for long-range

correlations [e.g., Koch and Brady, 1988; Cushman, 1991;

Cushman and Ginn, 1993; Dagan, 1994a; Rajaram and

Gelhar, 1995; Di Federico and Zhang, 1999], i.e., for Cff(s)

that behave as

Cff sð Þ / jsj�g ð82Þ

with 0 < g < 1. For such power law correlation functions

one obtains anomalous dispersive behavior, and D11
ens(t)

increases with a power of time according to

Dens
11 tð Þ / t1�g ð83Þ

i.e., @ = 1 � g in (80).

[189] For the simple case of purely advective transport

and perfect correlation (e.g., a perfectly stratified medium

with flow aligned with the strata), g = 0 in (83):

Dens
11 tð Þ / t: ð84Þ

This case is known also as the ‘‘racetrack’’ model (this is

not anomalous transport, however, as it is a superposition of

normal transport in each track). In the presence of diffusion,

longitudinal ensemble dispersion in a stratified medium

behaves as [Matheron and de Marsily, 1980]

Dens
11 tð Þ / t1=2: ð85Þ

A discussion of this particular behavior is given by, e.g.,

Matheron and de Marsily [1980], Koch and Brady [1988],

and Clincy and Kinzelbach [2001].

[190] The behavior of the ensemble dispersion coefficient

has been addressed frequently in the literature for short-

range correlated log-hydraulic conductivity, i.e., with expo-

nential or Gaussian-shaped Cff(s) [e.g., Dagan, 1984; Koch

and Brady, 1987; Dagan, 1988; Naff, 1990; Shvidler, 1993].

For such correlation models the criterion (81) for normal

transport in the long time limit is fulfilled, and D11
ens(t)

increases from the local dispersion coefficient toward its

macroscopic constant long time value (78).

6.2.2. Effective Transport Equation
[191] As outlined in section 6.2.1, the temporal variability

of the effective transport coefficients indicates that effective

transport, in general, cannot be described by the same

transport equation as local-scale transport, with the local-

scale parameters substituted by their upscaled counterparts.

Transport can be assumed to be Fickian only in a long time

limit under certain conditions. As pointed out in section 3,

the time required to reach such a limit can be exceedingly

long. Thus, for realistic transport times and transport dis-

tances, effective solute transport cannot, in general, be

described by the local-scale dynamics with upscaled (con-

stant) transport coefficients. This presents a problem also for

the averaging approaches discussed in section 6.1.1. In fact,

effective transport frameworks have been derived by en-

semble averaging the local-scale transport equation, leading

to equations for the ensemble-averaged concentration dis-

tribution that are nonlocal in space and time.

[192] There are various studies dealing with the derivation

of an effective transport equation for transport in a random

velocity field. By ensemble averaging of (74), one obtains

an equation for the ensemble-averaged concentration distri-

bution c(s, t) [e.g., Roberts, 1961; Koch and Brady, 1987;

Cushman, 1991; Koch and Shaqfeh, 1992; Neuman, 1993;

Deng et al., 1993; Cushman et al., 1995; Hu et al., 1995],

which typically has the form

@

@t
c s; tð Þ þ v½ �½ � � r c s; tð Þ � rr

Z
dds0

�
Z t

0

D d t � t0ð Þ d s� s0ð Þ½ þ D s� s0; t � t0ð Þ� c s0; t0ð Þ dt0 ¼ 0

ð86Þ

where the components Dij(s, t) of D denote memory kernels

that integrate the effect of spatial heterogeneity into a

spatiotemporal nonlocal effective dispersive flux. In other

work, there is also a nonlocal contribution to the velocity

term [Cushman et al., 1994; Cushman and Moroni, 2001].

[193] Equation (86) represents, in fact, a closure problem

as the memory kernel Dij(s, t) depends implicitly on the

concentration in a single realization. The equation can be

closed by using a perturbation expansion for the concentra-

tion distribution in the fluctuations of the underlying

random fields, which leads to a perturbation expression

for the memory function. It turned out that a second-order

approximation can lead to inconsistencies for the average

spatial concentration profiles [Koch and Shaqfeh, 1992;

Neuman, 1993]. Therefore higher-order closure schemes

resulting in partial summations of the perturbation expres-

sion for Dij(s, t) have been invoked [e.g., Koch and

Shaqfeh, 1992; Neuman, 1993; Zhang and Neuman, 1995;

Cushman et al., 2002]. Dentz and Berkowitz [2005] solved

such a closure problem for transport under random

adsorption by deriving an exact nonperturbative expression

for the memory function in terms of the heterogeneity

distribution. The ensemble dispersion coefficient Dij
ens(t) is

related to Dij(s, t) by [e.g., Koch and Brady, 1987, 1988]

Dens
ij tð Þ ¼ Dij þ

Z
dds

Z t

0

Dij s; t
0ð Þ dt0: ð87Þ

[194] Note that the CTRW formulation, i.e., the GME (2),

has no closure problem, because the f(s, t) is based on a

physical model of transport (e.g., (18)) and is not a function

of c(s, t). Therefore, as discussed in section 2.2, the general

nonlocal equation (2) is not related to the effective transport

equations outlined above. In other words, the differences
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between nonlocal formulations of transport lie in the kernel

of the integrodifferential equation. This kernel is the crucial

part and is dependent on the characteristics of a physical

model. In the case of the CTRW the starting point is the

ensemble average of the kinetics embodied in (1).

6.2.3. Discussion
[195] Most stochastic approaches to subsurface transport

model local-scale transport by a spatially and temporally

local transport equation that is characterized by spatially and

temporally varying transport parameters. Thus nonlocal

effects caused by small-scale heterogeneities are not taken

into account in the ‘‘traditional’’ stochastic approaches.

[196] While not a prerequisite, a local-scale ADE-like

equation is almost invariably chosen as the starting point for

development of an upscaled transport equation. As dis-

cussed in section 6, the application of (74) to describe

local-scale transport in a saturated aquifer assumes that

transport is Fickian in an homogeneous region. However,

in real aquifers the ‘‘homogeneous’’ regions are restricted in

size. As shown repeatedly in section 3, and pointed out by,

e.g., Levy and Berkowitz [2003] and Cortis et al. [2004a],

tracer transport even over small domain sizes is not

necessarily Fickian, and flow and transport do not

‘‘homogenize’’ on the same temporal and spatial scales.

The effect of non-Fickian transport characteristics at the

local scale remains to be explored within the framework of

the stochastic approach.

[197] A closely related problem arises: In terms of defin-

ing a local-scale equation one must ask, How local is

‘‘local’’? The heterogeneity of the conductivity field is often

used to fix the heterogeneity of the velocity field (through

Darcy’s law), neither of which is well defined at the pore

scale. As such the assumed local transport equation can be

considered applicable only at some scale larger than that of

the pores. In the same sense the relevant stochastic field is

thus not the conductivity field but rather the velocity field.

[198] Discussion of a number of issues related to the very

existence and definition of ‘‘macrodispersion’’ is in order.

First, expressions for the macrodispersion, e.g., the devel-

opment of (78), are valid only in a large time, Fickian

regime for transport. As discussed extensively in section 3,

this limit is rarely, if ever, reached in practice. Second, the

cutoff at which macrodispersion is reached is not well

defined because of memory effects (recall section 3.7).

Thus the classical ‘‘macrodispersion’’ parameter is not

necessarily an ‘‘absolute’’ quantity. Another interesting

perspective that questions whether macrodispersion coeffi-

cients exist is given by Lowe and Frenkel [1996].

[199] Furthermore, conceptual questions that remain to be

fully addressed refer to the issue of self-averaging [e.g.,

Bouchaud and Georges, 1990; Clincy and Kinzelbach,

2001; Eberhard, 2004], i.e., determining the length and

timescales over which the ensemble average ‘‘observables’’

are representative (and not artifacts of the statistical

ensemble) of the corresponding observables in a single

realization; that is, their sample to sample fluctuations

become small. Examples for when this self-averaging

property does not apply are transport in a stratified medium

[Clincy and Kinzelbach, 2001; Eberhard, 2004] and

transport in a randomly fluctuating transient velocity field

in an homogeneous medium [Dentz and Carrera, 2003].

Neuman [1993] and [Guadagnini and Neuman, 2001]

developed moment equations for the ensemble moments

of the solute concentration to study the uncertainty of the

average solute concentration due to the sample-to-sample

fluctuations of the solute concentration from realization to

realization of the underlying random fields.

[200] Practical application of the stochastic approach to

quantify the full evolution of a migrating contaminant

plume remains a key issue. The overwhelming emphasis

of such studies has focused on spatial moment character-

izations of tracer plume migration and/or determination of

the macrodispersion parameter. The extent of this limitation

is particularly notable when referring to the discussion in

section 3.4.2 and the figures referred to therein: It is

unfortunate, and somewhat perplexing, that with the intense

efforts of the last decades on stochastic analyses, consider-

ation of full, measured BTCs and efforts to fit them has

rarely been attempted. Clearly, for real applications we must

consider the full spatial and temporal evolution of a mi-

grating tracer plume. A criticism to this effect was voiced by

Gelhar [1997, p. 174], who stated that the emphasis of the

‘‘stochastic approach’’ over the previous decade had been

on ‘‘. . . theoretical refinements of practically insignificant,

but conveniently solvable, problems. . ..’’
[201] To conclude, both the CTRW approach and the

effective transport description resulting from a stochastic

transport model describe effective solute transport in terms

of nonlocal transport equations. The basic difference be-

tween the CTRW approach and the others discussed in this

section lies in the basic starting point to quantify transport

and in the method to account for the impact of fluctuations

present in disordered systems. In each chosen locale the

CTRW model incorporates a full pdf of the range of

transition rates composing the transport. A good illustration

of this difference is given by Bijeljic and Blunt [2006], as

discussed in section 3.8. The excellent comparison they

obtained for the experimentally measured macrodispersion

as a function of Pe required quantification of the b, derived
from the full pdf of the interpore transit times (recall

Figures 27–29). This key information is suppressed by

the averaging over a locale to obtain coefficients for the

ADE. The correct determination of macrodispersion

requires full knowledge of the entire time dependence of

the spatial moments of the plume (i.e., a solution of a

nonlocal-in-time equation) together with the cutoff time t2
(recall Figures 20–23).

7. ALTERNATIVE EFFECTIVE TRANSPORT
FORMULATIONS

[202] Recent attention has been focused on two alterna-

tive formulations to treat solute transport, based on the

multirate mass transfer (MRMT) approach [Pfister and

Scher, 1978; Roth and Jury, 1993; Harvey and Gorelick,

1995; Haggerty and Gorelick, 1995; Haggerty et al., 2000;
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Carrera et al., 1998] and on the use of fractional differential

equations (FDE) [Benson et al., 2000; Metzler and Klafter,

2000; Baeumer et al., 2001; Schumer et al., 2003]. We focus

below on these MRMT and FDE approaches, placing them

into context with CTRW theory.

[203] We note, parenthetically, that two other oft quoted

formulations to quantify solute transport are based on transfer

functions [Jury, 1982; Jury et al., 1986] and stochastic

convective [Dagan and Bresler, 1979; Sposito et al., 1986]

concepts. The transfer function approach is a general

descriptive method to characterize solute flux in hetero-

geneous media; a medium is treated as a black box, and

heterogeneity-induced effective transport mechanisms are

not specified. Transport of a solute is thus characterized by a

transfer function (Green’s function), which represents the

solute arrival time distribution at a control plane in response to

an instantaneous pulse at an input plane. The stochastic

convective model is essentially a specific implementation of

the transfer function approach, which assumes that solute

transport takes place in independent stream tubes with

constant flow velocity. There is no mass exchange between

stream tubes by local dispersion. The influence of a broad

range of flow velocities on solute arrival is then taken into

account by averaging the solution of the one-dimensional

ADE [Dagan and Bresler, 1979; Sposito et al., 1986].

Determination of the number and properties of the stream

tubes is ill-defined and nonunique, and the method provides

only a purely empirical fit to existing measurements. Another

drawback with these approaches is that parameters fit for a

specific BTC are not generally relevant for BTC fits or

predictions at other times or distances.

7.1. Multirate Mass Transfer

[204] The MRMT approach distinguishes mobile and im-

mobile solute fractions. MRMT thus models the effect of

medium heterogeneities on effective solute transport by a

distribution of typical mass transfer (exchange) times be-

tween mobile and immobile solute phases. The discussion of

MRMT includes naturally multiporosity and mobile-immo-

bilemodels, matrix diffusion,multiple trapping, and transport

under linear first-order reactions. MRMT has been applied to

quantify transport of linearly sorbing solutes [Sardin et al.,

1991; Roth and Jury, 1993], and transport in media

characterized by regions of fast and very slow solute

transport. In the latter context one encounters multiporosity

and, as a special case, double porosity models [Feehley et al.,

2000] and mobile-immobile [Nkedi-Kizza et al., 1984] and

matrix diffusion models [e.g., Glueckauf, 1955; Neretnieks,

1980; Rao et al., 1980; Cunningham et al., 1997; Carrera et

al., 1998]. These are all summarized under the name MRMT

models [Pfister and Scher, 1978; Haggerty and Gorelick,

1995; Haggerty et al., 2000] because they describe linear

mass transfer from mobile to immobile solute phases.

[205] In MRMT the total solute concentration c(s, t) is

decomposed into a mobile (subscript m) and an immobile

(subscript im) fraction:

c s; tð Þ ¼ cm s; tð Þ þ cim s; tð Þ: ð88Þ

The temporal change in the total concentration is balanced

by the divergence of advective and dispersive flux in the

mobile phase, which yields together with (88) the transport

equation [Roth and Jury, 1993; Haggerty and Gorelick,

1995]

@c s; tð Þ
@t

¼ �v � r cm s; tð Þ þ r � Dr cm s; tð Þ: ð89Þ

Equation (89) is closed by a linear relation between the

mobile and immobile concentrations, such as given by (91)

[Pfister and Scher, 1978] or by (97) [Carrera et al., 1998;

Haggerty et al., 2000; Dentz and Berkowitz, 2003].

[206] To better understand this relation between cm(s, t)

and cim(s, t), we first start with a multiple trapping process,

which is a specific case of MRMT that involves first-order

transitions into and out of immobilizing sites (traps). This

was the first example of MRMT shown to be a subset of

CTRW [Schmidlin, 1977; Noolandi, 1977; Pfister and

Scher, 1978]. In this case we can write

@cim s;tð Þi
@t ¼ cm s; tð Þwi � cim s; tð ÞiWi

cim s; tð Þ ¼ Sicim s; tð Þi;
ð90Þ

where wi is the capture (trapping) rate and Wi is the release

rate of the ith trap level. The traps are characterized by their

level (e.g., energy) and not by their spatial position. A

configuration average over these positions of the trap sites is

assumed. We first solve (90) with a L for cim(s, t)i, sum over

i to obtain ~cim (s, u), and then use the L of (88) to write ~cm
(s, u) in terms of ~c(s, u),

~cim s; uð Þi¼ ~cm s; uð Þ wi= uþWið Þ½ �;

~cm s; uð Þ ¼ ~c s; uð Þ 1þ
X
i

wi

uþWi

" #�1

:
ð91Þ

We insert this last relation into the L of (89) and compare it

to (33) to obtain the memory function

~M uð Þ ¼ 1þ
X
i

wi

uþWi

" #�1

; ð92Þ

and using (29), we solve for ~y(u) to formally obtain

~y uð Þ ¼ 1þ u�t þ u�t
X
i

wi

uþWi

" #�1

: ð93Þ

[207] The ability to cast the MRMT model into the

form of (93) demonstrates that MRMT is a special case

of CTRW. The relationship only makes sense in the low-

u limit, because if the characteristic time is chosen to be the

trapping time �t = (Siwi)
�1 (which is the average time in

the mobile state before being trapped again), then the limit

m � u�t � 1 corresponds to t larger than the trapping time,

i.e., many trapping events. Hence the random walk is

simply a series of many transitions between traps via a

mobile state.
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[208] There are two time domains in this motion, the time

spent in the mobile phase and the range of release times

from the traps. The latter dominates the transport. The u�t �
1 limit of (93) can be obtained by approximating (93) as

~y uð Þ ¼ 1� u�t � u�t
X
i

wi

uþWi

þ . . . : ð94Þ

Neglecting the u�t term and substituting with u/(u + Wi) =

1 � Wi/(u + Wi), we then have

~y uð Þ �
X
i

�twiWi

uþWi

ð95Þ

or

y tð Þ �
X
i

ciWi exp �Witð Þ; ð96Þ

where ci = �twi is the probability to be trapped in the ith

level.

[209] One can generalize (91) so that the discrete enumer-

ation of levels by i or the release time Wi
�1 can be converted

into a continuous one Wi
�1 ! tr, with a distribution P(tr) of

‘‘levels,’’ tagged by tr [e.g., Carrera et al., 1998; Haggerty

et al., 2000; Dentz and Berkowitz, 2003],

cim s; tð Þ ¼
Z1
0

P trð Þw trð Þ dtr
Z t

0

R t � t0ð Þ=tr½ � cm s; t0ð Þ dt0: ð97Þ

To see the connection with the multiple trapping case, we

insert P(tr) = Sid(tr � Wi
�1) and R(t/tr) = exp(�t/tr), the

transfer function, into the L of (97) and define wi � w(Wi
�1)

to obtain the ~cim(s, t) in (91).

[210] The particular form of the transfer function R(t/tr)

and the trapping rate w(tr) depends on the particular mass

exchange mechanism between mobile and immobile

regions. The function P(tr) is, more generally, the

distribution of mass transfer times, which reflects

the influence of small-scale medium heterogeneities on

the effective transport behavior. A ‘‘global’’ transfer

function can then be defined by

j tð Þ �
Z1
0

P trð Þw trð ÞR t=trð Þ dtr: ð98Þ

[211] Explicit functional forms of P(tr), w(tr), and R(t/tr)

can be specified for different physical situations [e.g., Dentz

and Berkowitz, 2003]. In sections 7.1.1 and 7.1.2 we

consider transport involving diffusive and ‘‘first-order’’

mass transfer.

7.1.1. Diffusive Mass Transfer
[212] For diffusive mass transfer the trapping rate w(tr) =

q/tr, where q denotes the volume ratio between the mobile

and immobile regions. In this case, P(tr) denotes the

distribution density of typical diffusion times in the

immobile regions. For diffusion into spherical immobile

regions the transfer function is given by [Haggerty and

Gorelick, 1995; Dentz and Berkowitz, 2003]

R t=trð Þ ¼ tr L�1 3ffiffiffiffiffiffiffi
u tr

p coth
ffiffiffiffiffiffiffi
u tr

p! "
� 1ffiffiffiffiffiffiffi

u tr
p

� �	 

; ð99Þ

while for diffusion into layered immobile regions one finds

R t=trð Þ ¼ tr L�1 1ffiffiffiffiffiffiffi
u tr

p tanh
ffiffiffiffiffiffiffi
u tr

p! "� �
: ð100Þ

7.1.2. ‘‘First-Order’’ Mass Transfer
[213] For ‘‘first-order’’ mass transfer between mobile and

immobile regions (e.g., the trapping case above [Pfister and

Scher, 1978; Haggerty et al., 2000]) and for linear kinetic

adsorption [Roth and Jury, 1993] the transfer function is

given by

R t=trð Þ ¼ exp �t=trð Þ: ð101Þ

The functional form of w(tr) depends on the particular

trapping mechanism. For purely advective trapping, w(tr) =
wo is constant; for ‘‘diffusive’’ trapping, i.e., if diffusive

mass transfer is to be mimicked by a first-order mechanism,

then w(tr) = q/tr [Dentz and Berkowitz, 2003].

7.1.3. Synthesis
[214] We now proceed by considering, in the same

way as above, the more general case (97). We take the L
of (97) and of (98) to obtain ~cim(s, u) = ~cm(s, u)~j(u);
combining this expression with the L of (88), we have
~cm(s, u) = ~c(s, u)/[1 + ~j(u)]. Inserting this into the L of

(89), a transport equation for the total concentration ~c(s, u),
and comparing it to the corresponding transport equation for

the decoupled CTRW (33), we find a relation between ~j(u)
and the transition time distribution ~y(u):

~j uð Þ ¼ 1� ~y uð Þ 1þ u tð Þ
u t ~y uð Þ

: ð102Þ

Recall that here the ~y(u) is based on the multiple trapping

process, and it is thus given by, e.g., a function of the form (93)

or (95).

[215] It should be emphasized that formally one can

define a function ~j(u) for any well-posed ~y(u) by inserting

it into (102). However, an arbitrary ~y(u) will not give rise to
a ~j(u) that makes sense for MRMT. Hence one should

develop a physically based ~j(u) (e.g., in (91)) for a MRMT

process and use (102) to find the ~y(u) that corresponds to
this particular process (e.g., (93)). The main point is that

CTRW encompasses MRMT as a special case. The relation

between MRMT and decoupled CTRW on the basis of this

expression has been studied in detail by Pfister and Scher

[1978] and Dentz and Berkowitz [2003]. In this review we

have considered a number of different y(s, t), e.g., the h
function (21), the expression for the RFN (42), and the

truncated power law (61). The representation of these

functions in a MRMT form, although formally possible, is

not a physically meaningful MRMT process.

RG2003 Berkowitz et al.: MODELING NON-FICKIAN TRANSPORT

38 of 49

RG2003



7.1.4. Generalization
[216] We generalize the above picture to account for a

kinetic interaction of particles between immobile states and

mobile ones possessing an intrinsic range of transition times

(a non-Fickian, dispersive medium). An example of such a

picture is the inclusion of matrix diffusion in the analysis of

advection-dominated transport in a RFN, discussed in

section 3.1. In this picture we couple two different time

spectra, one within the dispersive medium due to the

heterogeneity and the other due to the distribution of

transfer times from the immobile states.

[217] It is straightforward within the CTRW framework to

quantify this picture by inserting traps into a system where

the motion of the mobile fraction is governed by a p(s)y (t).

In this situation, instead of using the L of (89) as the starting

equation, we use

u~c s; uð Þ � c0 sð Þ ¼� ~M uð Þ vy � r~cm s; uð Þ
�

� Dy : rr~cm s; uð Þ
�
:

ð103Þ

This equation accounts for the overall transport through the

(heterogeneous) domain, with the y(t) and ~M (u) being

defined accordingly, e.g., as discussed in section 3. In

addition, we consider the effect of local traps by retaining

the kinetics of the immobile fraction expressed by (90)

and (91). Inserting the relation (91) (between ~cm(s, u) and
~c(s, u)) into (103), we derive an effective memory function,
~M (u)eff, for this combined motion,

~M uð Þeff¼ ~M uð Þ= 1þ Siwi= uþWið Þ½ � ð104Þ

or, more generally, from (97) and (98),

~M uð Þeff¼ ~M uð Þ= 1þ ~j uð Þ½ �: ð105Þ

[218] Using the definition of a memory function (29),

written in terms of ~y(u)eff as ~M (u)eff = �tu~y(u)eff/[1 �
~y(u)eff], one can formally define an effective ~y(u)eff
corresponding to ~M (u)eff,

~y uð Þeff¼ ~y uð Þ= 1þ ~j uð Þ 1� ~y uð Þ
� �+ ,

: ð106Þ

Note that in (106) one cannot substitute ~j(u) as defined in

(102) because there ~y(u) refers to the specialized MRMT

case. Here ~y(u) describes the dispersive medium of the

mobile states. In the limit u ! 0, ~y(0)eff = 1 as long as
~j(u)[1 � ~y(u)] ! 0. The latter condition is an effective

limit on how broad the range of mobile times can be with

respect to the range of release times.

7.2. Fractional Derivative Equations

[219] FDE formulations to quantify transport have re-

ceived attention in recent years [e.g., Benson et al., 2000;

Metzler and Klafter, 2000; Baeumer et al., 2001; Schumer et

al., 2003; Zhang et al., 2005]. A detailed treatise is given by

Metzler and Klafter [2000]. It should be recognized that the

term ‘‘fractional’’ can refer to fractional order differentiation

in time or space or both. Moreover, a number of definitions

for fractional operators exist [Metzler and Klafter, 2000]. In

principle, one can derive both temporal and spatial FDEs

from a limiting form of the CTRW solution (8) by

expanding L(k, u) in (8) for small values of u and k,

rearranging the equation, and using appropriately defined

operators. FDEs have also been demonstrated to be special

cases of other transport formulations [e.g., Cushman and

Ginn, 2000]. Here we demonstrate that the ‘‘usual’’

temporal fractional derivative equation for transport is a

specialized, asymptotic limit of the CTRW formulation. We

also discuss other limitations of using the temporal and

spatial FDEs for transport modeling in porous media

systems. It is interesting to note that while the (temporal)

FDE is usually written phenomenologically, as a ‘‘general-

ized analog’’ to the ADE, its underlying physical and

mathematical picture is elucidated when seen as a limited

subset of the CTRW formulation.

[220] The temporal FDE can be written as [Metzler and

Klafter, 2000]

@c s; tð Þ
@t

¼ � @1�b

@t1�b v0 sð Þ � rc s; tð Þf �r � D0 sð Þ � rc s; tð Þ½ �g;

ð107Þ

with the definition of the operator

@�g

@t�g
c s; tð Þ � 1

G gð Þ

Z t

0

c s; t0ð Þ
t � t0ð Þ1�g

dt0: ð108Þ

In (107) the primes on v0 and D0 indicate that these

quantities do not have the same dimensions as usual; that is,

v0 has dimensions [L]/[tb]. Another advantage of the CTRW

transport equations, e.g., (33), is that we can define a

dimensionless time t � t/�t, where�t is a time unit determined

by the physical model for y(t) (as in the examples in

section 3). The comparison between FDE and CTRW must

include this difference in time units. The operator (108) was

constructed to possess the important relation of its L,
L @�gc s; tð Þ=@t�g; u½ � ¼ u�g~c s; uð Þ: ð109Þ

[221] Commuting the operations in (107) and then

performing the L of (107), we obtain the working transport

equation (33) with the special value for ~M (u) / u1�b. This

value of ~M (u) corresponds to a ~y(u) with the asymptotic

form (44), with u�t � 1. Hence the temporal FDE is a special

case of CTRW restricted to a decoupled, asymptotic power

law form for y(t) over the range 0 < b < 1.

[222] To obtain a ~y(u) for all u which would be

equivalent to (107), we equate (29) to the dimensionless

form u1�b(�t/cb), with the result

~y uð Þ ¼ 1

1þ cbub
; 0 < b < 1: ð110Þ

The L�1 of (110) is a simple exponential for b = 1; y(t) �
t�1�b for t/�t � 1 and is undefined for small t/�t. Hence the

solutions of (107) are applicable only in the asymptotic limit

and are not necessarily physically meaningful for small t/�t.
The time range over which the FDE is actually reliable

remains an open question because it depends on the value of
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�t, which is not defined naturally in the form of (107).

Moreover, because this FDE solution is limited to a fixed b
and 0 < b < 1, it cannot account for an evolution to a Fickian

regime.

[223] We stress that these properties of the FDE are in

sharp contrast to the CTRW models for y(t) discussed in,

e.g., sections 3.5 and 3.7 that provide the complete temporal

solution. Recall also that as shown in section 3, analysis of

laboratory and field data reveals many instances for which b
falls in the range 1 < b < 2.

[224] One apparent attraction of the FDE to some propo-

nents is its pde form which is similar to the familiar ADE.

However, the operator (108) is simply a definition, and

actual evaluation of (107) follows methods such as de-

scribed to solve (33). More significantly, the pde form of the

CTRW transport equation (33) contains the FDE (107) as a

particular case, and its evaluation for a range of BCs is

straightforward as discussed in section 2.6.

[225] In contrast to the temporal FDE a spatial FDE

assumes a transition time distribution y(t) with a finite first

moment and a transition length distribution p(s) with a

diverging second moment. This latter condition is unphy-

sical, implying that some particles must execute long jumps

instantaneously. This case can be shown to be a Markovian

process (rather than a temporally based semi-Markovian

one) called a Lévy flight. It is important to recognize that a

Lévy flight refers to a random movement in space, where

the length of the transitions is considered over discrete

steps, but time is not involved. Lévy walks, on the other

hand, attach a time ‘‘penalty’’ by assigning a velocity to

each transition in space. In the simplest case this velocity is

constant; relaxation of this condition leads back to the more

general CTRW formulation of section 2.3 [Klafter et al.,

1987; Shlesinger et al., 1993]. Lévy walks cannot be

described in terms of simple fractional transport equations

[Metzler, 2000].

[226] Application of a spatial FDE to tracer migration in

geological formations demands a domain that contains

‘‘streaks’’ of high and low hydraulic conductivity, arranged

so as to lead to particle transitions of high and low velocity.

In other words, the physical picture of a Lévy flight requires

a wide distribution of streak lengths to obtain a non-Fickian

distribution of particle transitions. Recall though that non-

Fickian patterns arise even without the clear presence of

such a conductivity distribution (e.g., Figure 1). Moreover,

even within a long streak, particle scatter will reduce or

eliminate the number of long excursions.

[227] The spatial FDE thus uses the power law form p(s)

� jsj�1�V, 0 < V < 2, for the transition length, which is the

characteristic function of a centered and symmetric Lévy

distribution.

[228] For V ( 2 one recovers the usual Gaussian behavior.

With an asymptotic (small k) form for p(s) one can obtain

[Metzler et al., 1998] a spatial FDE

@

@t
c s; tð Þ þ v � rc s; tð Þ ¼ DVrVc s; tð Þ; ð111Þ

where here D is a generalized diffusion parameter.

[229] In terms of the CTRW framework a power law p(s)

can be considered in a decoupled form of y(s, t) or, alter-
natively, directly in a coupled y(s, t). With regard to the

former case we showed in section 3.3 that a power law p(s)

is not generally required; an example of the latter case is

provided in section 3.1.

[230] We conclude this section by pointing out also that

the FDE approach, both temporal and spatial, does not

recognize the transport velocity to be fundamentally differ-

ent from the fluid velocity, as discussed already in sections

3.5 and 6.1.2. Thus the FDE places the mechanism for non-

Fickian behavior entirely on the value of the exponent

controlling the (spatial or temporal) power law distribution.

We stress once again that in contrast the CTRW formulation

(33) is more comprehensive: The memory function accounts

for the nonlocal-in-time dispersion, whereas Dy provides a

measure of the local-in-space dispersion.

8. CONCLUDING REMARKS

[231] Quantification of contaminant transport in geolog-

ical formations has been a long-standing problem. The

difficulty in capturing the complexities of tracer plume

migration patterns suggests that local, small-scale hetero-

geneities cannot be neglected; we have shown that these

unresolvable heterogeneities contribute significantly to the

occurrence of non-Fickian transport. Indeed, BTCs of

passive tracers in even macroscopically ‘‘homogeneous’’

granular materials exhibit non-Fickian features: Early and

late arrival times are observed to differ systematically from

theoretical predictions based on solution of the ADE for

uniform porous media. Even in these small-scale, ‘‘homo-

geneous’’ domains, subtle and residual pore-scale disorder

effects can account for these observations.

[232] We have reviewed a recent, different approach to

this problem based on a CTRW framework. The theory

developed within this framework is structured by a concep-

tual picture of transport as a sequence of particle transfer

rates. The starting point to arrive at the CTRW is the master

equation, which describes the kinetics of the probability of

site occupancy, incorporating these rates, for a single

realization of an heterogeneous medium. The ensemble-

averaged ME is the GME, which we show is equivalent to

the CTRW, and serves as the transport equation. A partic-

ularly convenient approximation of this equation is the pde

(33) ‘‘similar’’ in form, in Laplace space, to the well-known

ADE. However, this equation is fundamentally different

because it incorporates the decisive memory term, ~M (u), as

well as ‘‘generalized’’ vy and Dy terms. Equation (33) can

also be written in a non-Laplace transformed, nonlocal-in-

time form, (35), which can be compared directly to the

familiar ADE and solved numerically without requiring

Laplace inversion. Boundary value solutions of this

transport equation yield tracer migration patterns that are

in excellent agreement with the entire series of observations.

[233] On this basis we can state that the CTRW frame-

work represents a powerful and effective means to quantify

transport in a wide range of porous and fractured media. It
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enables calculation of both BTCs and the full temporal and

spatial evolution of contaminant plumes, covering both the

premacrodispersion and macrodispersion regime time

ranges. Further, as the calculation does not resort to using

perturbation theory, the results are valid for strongly het-

erogeneous formations (e.g., log hydraulic conductivity

variance >10). The CTRW theory can be extended naturally

to treat transport in nonstationary domains with specific

conditioning information.

[234] The CTRW equation is governed by the pdf y(s, t),
which characterizes particle transitions in space and time.

As demonstrated throughout sections 2, 3, and 4, the choice

of the functional form of y(s, t) for any given application

must be dictated by the physics of the flow field, which are

determined by the particular heterogeneous system. A

generic form of y(s, t) can be seen in Figure 3. It is

calculated from (18) and (19), the ensemble average of a

functional of the rates w appearing in the ME. The type of

time dependence and parameter values of y(s, t) determine

the nature of the transport. For example, if the duration of

observations coincides with a slow power law type of t

dependence, then the transport will be strongly influenced

by (rare) low-velocity regions; as a consequence one need

not distinguish explicitly between the contributions of slow

advection and diffusion. From a practical, field-scale point

of view it is in any case often difficult to make such

distinctions. When such distinctions can be made, we have

generalized the CTRW transport theory in dispersive media

to specifically include interactions with immobile states or

matrix diffusion. The direct relationship of y(s, t) to the

flow field thus connects it to the fully correlated hydraulic

conductivity field. If it is known, the velocity histogram

determines y(s, t) (e.g., see section 3.1). What remains is to

investigate how best to use known heterogeneity details of a

domain to define a specific y(s, t). The transport problem

has been successively reduced to this key aspect of the

physical modeling.

[235] Issues of parameter fitting and model upscaling

arise naturally. Clearly, application of any transport theory

requires understanding of the nature of the model parame-

ters in the context of a particular problem of interest. Thus

in the context of CTRW, for example, b in the asymptotic

y(t) function, as used in (47), changes with increases in the

flow velocity v. The change in v shifts the time range to

different features of the y(t) (or y(s, t)) function. It is the

y(t) function that is intrinsic to the physical modeling and

not b, which characterizes a feature of y(t). In the CTRW

framework, as in any other fully descriptive transport

modeling approach, fitting parameters cannot, by definition,

be determined a priori or solely on the basis of consideration

of the hydraulic conductivity distribution. Domain-specific

measurements must be used to constrain the model.

[236] As a consequence, and because hierarchies of

heterogeneity scales, which cannot be resolved, exist over

a broad range of length scales, we must ultimately work at

the length scale of interest and not expect to simply ‘‘scale

up’’ from, for example, core scale measurements to pre-

dictions at the 100 m scale. Thus it is not reasonable to

expect that model parameters (whether evaluated for

CTRW, the ADE or any other model) determined from,

e.g., a laboratory-scale analysis of a 10 cm long rock core

sample can necessarily be ‘‘scaled up’’ to realistically

capture field-scale behaviors. In other words, we must

reconcile with the borders of predictability and accept the

reality that model parameters are not scale-independent. We

have introduced the hybrid approach to deal with this

problem, i.e., to restrict the parameters of y(t) to a smaller

scale while the larger scale is conditioned by observed

trends of a permeability field.

[237] Motivated by these considerations, we have exam-

ined underlying assumptions of upscaling formulations and

the stochastic approach and their differences with respect to

CTRW. With regard to other approaches we presented

several analyses that demonstrated the ADE, fractional

derivative, and multirate mass transport and mobile-immo-

bile models to be, in fact, specialized subsets within the

CTRW framework.

[238] We have suggested that consideration of the tem-

poral-spatial correlations in tracer transport within the

CTRW framework represents a change in paradigm. The

emphasis of the CTRW approach on temporal aspects of

particle transport, induced by spatial heterogeneity, is a key

feature. In other words, CTRW theory recognizes that

particles experience a distribution of times not just lengths

of transitions, as they move through a porous/fractured

medium. Importantly, the temporal and spatial scales of

homogenization for transport are different than they are for

flow. The shift in paradigm is due to the different approach

to averaging: a full pdf of local rates versus a local average

rate (such as for the ADE and variant formulations). As an

example the parameters b and t2 derived from the pore-scale

pdf (e.g., Figure 27) were needed to determine the scaling

with Pe of the measured macrodispersion.

[239] We conclude by stating that because natural hetero-

geneity in geological formations occurs over a broad range

of scales, we must recognize the ubiquity of ‘‘non-Fickian’’

transport, which should be considered the expected phe-

nomenon, with Fickian transport being the exception.

APPENDIX A: RANDOM WALKS
[240] The familiar random walk (RW) is a sequence of

displacements, each one labeled by an integer step number

n. The displacement at each step is governed by a

distribution p(s). A series of s chosen at random from p(s)

generates one such RW. The outcome of this procedure

executed repeatedly from the same origin can be described

by the linear recursion relation

Pn sð Þ ¼
X
s0

p s� s0ð ÞPn�1 s0ð Þ ðA1Þ

X
s

p sð Þ ¼ 1; ðA2Þ

where Pn(s) is the probability for the walker to be found at s

after n steps, which in (A1) is determined by a single step
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from where it was at n � 1 steps. For n� 1 one can assume

n to be a continuous variable (/ t) and expand Pn�1(s
0) in n

and s � s0. The expansion

Pn�1 s0ð Þ � Pn s0ð Þ � @

@n
Pn s0ð Þ

� Pn sð Þ þ s0 � sð Þ � rPn sð Þ

þ 1

2
s0 � sð Þ s0 � sð Þ : rrPn sð Þ � @

@n
Pn sð Þ ðA3Þ

is substituted into (A1), with the dyadic symbol (colon)

denoting a tensor product.

[241] The lowest-order term is retained on the right side

of (A3) in the expansion of @Pn(s
0)/@n. Assuming the

isotropic case, the second term on the right side of (A3)

does not contribute (the first moment of p(s) vanishes). The

time variable is introduced by multiplying the resulting

equation by r, the number of steps per time (i.e., n = rt) to

obtain the classic diffusion equation

@

@t
P s; tð Þ ¼ Dr2P s; tð Þ; ðA4Þ

where

D � r

2

Z
ds

1

3
s2p sð Þ: ðA5Þ

Hence a simple random walk, after many steps, is the same

as a diffusion process. There is effectively one rate constant

r in this process.

[242] To account for systems with a multitude of rates, the

RW is generalized as

Rn s; tð Þ ¼
X
s0

Z t

0

y s� s0; t � t0ð ÞRn�1 s0; t0ð Þdt0; ðA6Þ

where Rn(s, t) is the probability per time for a walker to just

arrive at site s at time t in n steps and y(s, t) is the

probability rate for a displacement s with a difference of

arrival times of t. Clearly, the joint distribution y(s, t) is the
generalization of p(s) in (A1). The steps can each now take

place at different times. The initial condition is R0(s, t) =

ds,0d(t � 0+). The time integral in (A6) sums over all the

possible times for the single step to occur. If we are not

interested in the number of steps but only in the time to

reach s from the origin, then one can sum over all possible

steps and define

R s; tð Þ �
X1
n¼0

Rn s; tð Þ; ðA7Þ

and summing over n in (A6), one arrives at the form for the

CTRW

R s; tð Þ �
X
s0

Z t

0

y s� s0; t � t0ð ÞR s0; t0ð Þdt0 ¼ ds;0d t � 0þð Þ ðA8Þ

as shown in (3).

[243] The equivalence between CTRW (3) and the GME

(2) is derived by starting with the L of (A8)

~R s; uð Þ �
X
s0

~y s� s0; uð Þ~R s0; uð Þ ¼ ds;0 ðA9Þ

and substituting (from the L of (4) and (5) with P instead

of c)

~R s; uð Þ ¼ u~P s; uð Þ= 1� ~y uð Þ
� �

: ðA10Þ

The final form is arranged by subtracting ~y(u)u~P(s, u)/[1 �
~y(u)] from both sides of (A9) to obtain

u~P s; uð Þ � ds;0 ¼ �
X
s0

u~y s0 � s; uð Þ~P s; uð Þ
1� ~y uð Þ

þ
X
s0

u~y s� s0; uð Þ~P s0; uð Þ
1� ~y uð Þ

: ðA11Þ

Now the Laplace transform is inverted to obtain the GME

@P s; tð Þ
@t

¼ �
X
s0

Z t

0

f s0 � s; t � t0ð ÞP s; t0ð Þdt0

þ
X
s0

Z t

0

f s� s0; t � t0ð ÞP s0; t0ð Þdt0 ðA12Þ

with

~f s; uð Þ ¼ u~y s; uð Þ= 1� ~y uð Þ
� �

ðA13Þ

as shown in (7), the L of f(s, t).
[244] As discussed in section 2.5, using a form of y(s, t)

containing a single rate

y s; tð Þ ¼ w sð Þ exp �Wtð Þ; W � Ssw sð Þ ðA14Þ

reduces the GME (A12) to a local-in-time equation. It is

straightforward to show this result by inserting the L of

(A14)

~y s; uð Þ ¼ w sð Þ
uþW

ðA15Þ

into (A13) to determine ~f(s, u) = w(s), which is independent

of u. Hence f(s, t) = w(s)d(t); that is, there is no memory

function. This result is less obvious from the CTRW form of

the equation (A8) where the single rate form of y(s, t)
should reduce (A8) to a Markovian equation. Again, the L
is used; (A15) and (A10) are inserted into (A9) and

algebraically rearranged to yield

uþWð Þ~P s; uð Þ � ds;0 ¼
X
s0

w s� s0ð Þ~P s0; uð Þ; ðA16Þ

which can now be L inverted to obtain

ts
@

@t
P s; tð Þ þ P s; tð Þ ¼

X
s0

p s� s0ð ÞP s0; tð Þ; ðA17Þ
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where ts � 1/W and p(s) � w(s)/W. The left side of (A17) is

the low-order expansion of P(s, t + ts). Hence the

Markovian process is

P s; t þ tsð Þ ¼
X
s0

p s� s0ð ÞP s0; tð Þ; ðA18Þ

which recursively relates P(s, t) with discrete time steps of

ts as in (A1) (i.e., t/ts = n).

[245] On a brief historical note the year 2005 marked the

100 year anniversary of A. Einstein’s famous paper on

Brownian motion [Einstein, 1905]. His analysis involved

a recursion relation and an expansion leading to the

diffusion equation similar to the development outlined

above. His solution of the latter showed for the first time

that the displacement (rms) s of the Brownian particle is

proportional to
ffiffi
t

p
and not equal to vt as was being assumed

in those years. By using the wrong (latter) dependence, the

experimentalists were puzzled by the need to invoke a time-

dependent velocity v. Einstein investigated systems with one

effective rate (e.g., r above). The different time dependence

of the particle displacement (
ffiffi
t

p
) is due to the nature of

diffusive motion, a result now of common understanding.

Seventy years later, observations of the transit time tr of
electrons in disordered semiconductors presented a similar

puzzle. The electron mobility (velocity per unit electric

field), considered to be an intrinsic property of the material,

was found to depend on sample length, electric field, etc.

(any variable that changes the duration of the experiment).

Again, the problem was traced to using the wrong

relationship for the mean displacement �‘ of the electron

packet. Instead of �‘ = vt it was discovered that �‘ / tb

(equation (46)) [Scher and Montroll, 1975]. In this case,

however, the difference is ascribed to a wide distribution of

rates due to the disorder of the system as we have been

discussing in this paper in the geological context.

APPENDIX B: DERIVATION OF RELATION
BETWEEN Y(s, t) AND w(s0, s)

[246] We cast the master equation into the form of a

random walk equation and derive the form for ys0,s(t):

@C s; tð Þ
@t

¼ �
X
s0

w s0; sð ÞC s; tð Þ þ
X
s0

w s; s0ð ÞC s0; tð Þ; ðB1Þ

where w(s0, s) is the transition rate from s0 to s; the

dimension of Ssw is reciprocal time. The ys0,s(t) plays the

role of y(s, t), but it is dependent on the location; that is,

each neighborhood is different in a specific representation.

Each transition between lattice sites is assigned a transition

rate.

[247] Recalling section 2.3, the general equation for the

random walker in this system, which is nonstationary in

space and stationary in time, is

R s; tð Þ ¼
X
s0

Z t

0

ys;s0 t � t0ð ÞR s0; t0ð Þdt0; ðB2Þ

where the ys,s0(t) now is an explicit function of position. The

correspondence between the ME and the random walk is

C s; tð Þ ¼
Z t

0

Ys t � t0ð ÞR s; t0ð Þdt0; ðB3Þ

Ys tð Þ ¼ 1�
Z t

0

ys t
0ð Þdt0; ys tð Þ �

X
s0

ys0;s tð Þ: ðB4Þ

The u dependence of the Laplace transform is understood in

the following:

~Ys ¼
1� ~ys

u
ðB5Þ

~Cs ¼ ~Ys
~Rs �! ~Rs ¼

u~Cs

1� ~ys

: ðB6Þ

From (B2),

~Rs �
X
s0

~ys;s0
~Rs0 ¼ ds;0; ðB7Þ

and substituting (B6), we obtain

u~Cs

1� ~ys

¼
X
s0

~ys;s0
u~Cs0

1� ~ys0
þ ds;0: ðB8Þ

[248] We now subtract the term u~ys
~Cs/(1 � ~ys) from both

sides of (B8) to obtain

u~Cs

1� ~ys

� u~ys
~Cs

1� ~ys

¼ �
X
s0

u~ys0;s
~Cs

1� ~ys

þ
X
s0

~ys;s0
u~Cs0

1� ~ys0
þ ds;0;

ðB9Þ

which is equal to

u~Cs � ds;0 ¼ �
X
s0

u~ys0;s
~Cs

1� ~ys

þ
X
s0

u~ys;s0
~Cs0

1� ~ys0
: ðB10Þ

[249] One now compares the two forms of the L of the

ME, i.e., the L of (B1) and (B10), to obtain

u~ys0;s

1� ~ys

¼ w s0; sð Þ: ðB11Þ

First, we sum over s0 and solve for ~ys

u~ys

1� ~ys

¼
X
s0

w s0; sð Þ; ðB12Þ

so that

~ys ¼

X
s0
w s0; sð Þ

uþ
X

s0
w s0; sð Þ

: ðB13Þ
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Substituting this expression for ~ys into (B11) yields

~ys0;s ¼
w s0; sð Þ

uþ
X

s00
w s00; sð Þ

: ðB14Þ

Inverting the L, we obtain the result

ys0;s tð Þ ¼ w s0; sð Þ exp �t
X
s00

w s00; sð Þ
" #

: ðB15Þ

APPENDIX C: DEFINITION OF THE DYADIC
[250] For the sake of clarity the dyadic is defined as

follows. Noting that

ss ¼ sxi; syj; szk
� � sxi

syj

szk

266664
377775 ¼

sx sxii sx syij sx szik

sy sxji sy syjj sy szjk

sz sxki sz sykj sz szkk

266664
377775 ðC1Þ

and

rr ¼ @xi; @yj; @zk
� � @xi

@yj

@zk

266664
377775 ¼

@x @xii @x @yij @x @zik

@y @xji @y @yjj @y @zjk

@z @xki @z @ykj @z @zkk

266664
377775;
ðC2Þ

then it follows that

ss : rrPn x; y; zð Þ ¼

sx sxii sx syij sx szik

sj sxji sy syjj sy szjk

sz sxki sz sykj sz szkk

26666664

37777775

�

@x @xii @x @yij @x @zik

@y @xji @y @yjj @y @zjk

@z @xki @z @ykj @z @zkk

26666664

37777775Pn x; y; zð Þ

¼ s2x@
2
x Pn x; y; zð Þ þ sx sy@x @yPn x; y; zð Þ

þ sx sz@x @zPn x; y; zð Þ þ sy sx@y @xPn x; y; zð Þ
þ s2y@

2
y Pn x; y; zð Þ þ sy sz@y @zPn x; y; zð Þ

þ sz sx@z @xPn x; y; zð Þ þ sz sy@z @yPn x; y; zð Þ
þ s2z@

2
z Pn x; y; zð Þ: ðC3Þ

APPENDIX D: LOW u EXPANSION OF ~Y(s, u)
FOR THE RANDOM FRACTURE MODEL

[251] We shall carry out the low u (or more precisely the

dimensionless form m) expansion of ~y(s, u) in (42) and

evaluate the functions p1(s) and p2(s) in (48) for this case.

We rewrite (42) in the modified notation

~y s; uð Þ ¼ N |ð Þ cos2b q
2

� �
zbKb 2zð Þ;

N |ð Þ � C0
n|

3=2 exp �|ð Þ;

z �
ffiffiffiffiffiffiffiffi
2|m

p
= cos

q
2
:

ðD1Þ

We expand Kb(2z) in an ascending power series in z,

Kb 2zð Þ ¼ p
2 sin bpð Þ I�b 2zð Þ � Ib 2zð Þ

� �
; ðD2Þ

where

I�b 2zð Þ � Ib 2zð Þ ¼ z�b
X1
k¼0

z2k

k!G 1þ k � bð Þ

� zb
X1
k¼0

z2k

k!G 1þ k þ bð Þ ðD3Þ

zbKb 2zð Þ ¼ p
2 sin bpð Þ

X1
k¼0

z2k

k!G 1þ k � bð Þ

"

�z2b
X1
k¼0

z2k

k!G 1þ k þ bð Þ

#
: ðD4Þ

To lowest order in m (for z < 1), (D4) is

zbKb 2zð Þ � 1

2
G bð Þ � p

2 sin bpð Þ

"
2|

cos2
q
2

� �#b mb

G 1þ bð Þ þ O mð Þ;

ðD5Þ

which when inserted into (D1) is readily seen to be of the

form in (48) with

p1 sð Þ ¼ N |ð Þ cos2b q
2

� �
1

2
G bð Þ

p2 sð Þ ¼ N |ð Þ p 2|ð Þb

2 sin bpð ÞG 1þ bð Þ :
ðD6Þ

An interesting feature of the m expansion in (D4) is the

absence of powers of mb. The expansion is of the form of a

sum of an entire function and mb multiplied by an entire

function.

APPENDIX E: ASYMPTOTIC EXPRESSION
FOR A POWER LAW Y(t)
[252] We derive, for the sake of completeness, the well-

known asymptotic expression for ~y(u) (44) for y functions

that have a power law tail

y tð Þ � t�1�b ðE1Þ
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with 0 < b < 1. We start by adding and subtracting 1 from

the definition of ~y(u) in the form

~y uð Þ ¼ 1�
Z 1

0

1� e�utð Þy tð Þ dt: ðE2Þ

We assume that y(t) is well approximated by the power law

in (E1) beyond some value t = a. Hence we can write (E2)

~y uð Þ ¼ 1�
Z a

0

1� e�utð Þy tð Þdt � c1

Z 1

a

1� e�ut

t1þb dt; ðE3Þ

where c1 is a constant. The integration variable t in the left

integral of (E3) is bounded between two finite values, and

hence we can expand the exponential term in this integral

and (below) retain the lowest-order term of u:Z a

0

1� e�utð Þy tð Þ dt ¼ �
X1
n¼1

�uð Þn �tna
n!

; ðE4Þ

where

�tna ¼
Z a

0

tny tð Þdt: ðE5Þ

Hence this integral results in terms of order u and higher.

We recast the right integral of (E3) with an integration by

parts,

Z 1

a

1� e�ut

t1þb dt ¼ � 1� e�ut

btb

����1
a

þu

Z 1

a

e�ut

btb
dt: ðE6Þ

The left term in (E6) is of order u and higher. In the right

integral in (E6) we make the substitution x = ut, so that

u

Z 1

a

e�ut

btb
dt ¼ ub

b

Z 1

ua

x�be�xdx

¼ ub

b
G 1� bð Þ � g 1� b; uað Þ½ �; ðE7Þ

where g(b, x) is the incomplete gamma function [Abramo-

witz and Stegun, 1970]. Combining this solution with the

integral in (E4) and substituting into (E3) leads to the

asymptotic approximation for small u:

~y uð Þ ¼ 1� c2u
b þ ab

b
u
X1
n¼0

�uað Þn

1� bþ nð Þn!þO uð Þ þ . . . ; ðE8Þ

where c2 = G(1 � b)c1/b is a constant. Note (E8) contains a

ub term plus entire functions of u. This is in contrast to (D4)

where the asymptotic expression contains an entire function

and mb multiplied by an entire function (which is due to the

exponential factor in (41)).

NOTATION

Note that only the principal symbols used throughout this
report are given in the notation list.

cb constant (equation (44)).
�cb constant (equation (48)).

c(s, t) ensemble-averaged, normalized concen-
tration.

C(s, t) normalized concentration.
~c(s, u) Laplace transform of c(s, t).
C(k, u) Fourier transform of ~c(s, u).

cm(s, t) mobile phase.
cim(s, t) immobile phase.

D dispersion tensor.
Dy

1
2
ss=�t ¼ 1

2
jvyjss=j�sj � 1

2
jvyjay:

DL longitudinal dispersion.
DT transverse dispersion.

F(s, t) first-passage time distribution.
fB(t) � Ss2,s3F(s1 = L, s2, s3, t), form of BTC.
F Fourier transform.

h(t) effective traveltime distribution, see (53).
j average mass flux.

Kb(z) modified Bessel function.
k Fourier variable (dimensional).
L Laplace transform.
L length.
‘ length scale.

�‘(t) mean plume displacement.
M(t) memory function.
~M (u) Laplace transform of M(t).
p(s) probability distribution of transition dis-

placements.
Pe Peclet number.
q specific discharge.

R(s, t) probability per time for particle to arrive
at site s at time t.

s, x location in space.
�s mean distance, first moment of p(s).
t time.
t̂ first temporal moment (mean time) of

y(t).
�t characteristic time.
t1 median transition time in y.
t2 cutoff time in y.
u Laplace variable (dimensional).
v velocity (one-dimensional).
v velocity.
vy �s=�t.

w(s, s0) particle transition from s0 to s.
{w} aggregate of transition rates.
W total rate, defined as W =

P
s0w(s

0, s).
x, y large, small length scales.
a dispersivity.
b exponent (equation (44)).
g exponent (equation (48)).
h see (52), also name of (21).

L(k, u) Fourier transform of ~y(s, u).
m dimensionless Laplace variable (��tu).
x � 1/v.
r dimensionless distance (�s/so).

�s(t) standard deviation of plume displace-
ment.

t dimensionless time (�t/�t).
f(s, t) kernel function of GME.
~f(s, u) Laplace transform of f(s, t).
y(s, t) joint probability density function for

particle transitions.
~y(s, u) Laplace transform of y(s, t).

y(t) �
P

sy(s, t).
ys0,s(t) joint probability density function for

particle transitions for a single realization.
tilde Laplace transformed quantity.

angle brackets volume average.
double brackets ensemble average.
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ADE advection-dispersion equation.
BC boundary condition.

BTC breakthrough curve.
CTRW continuous time random walk.
FPME Fokker-Planck with memory equation.
GME generalized master equation.
ME master equation.
pde partial differential equation.
pdf probability density function.

REV representative elementary volume.
RFN random fracture network.
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